Suppr超能文献

用于足下垂辅助与康复的功能性电刺激系统中的传感与控制策略:一项系统文献综述

Sensing and Control Strategies Used in FES Systems Aimed at Assistance and Rehabilitation of Foot Drop: A Systematic Literature Review.

作者信息

González-Graniel Estefanía, Mercado-Gutierrez Jorge A, Martínez-Díaz Saúl, Castro-Liera Iliana, Santillan-Mendez Israel M, Yanez-Suarez Oscar, Quiñones-Uriostegui Ivett, Rodríguez-Reyes Gerardo

机构信息

División de estudios de Posgrado e Investiagación, TecNM-Instituto Tecnológico de la Paz, La Paz 28080, Mexico.

Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico.

出版信息

J Pers Med. 2024 Aug 17;14(8):874. doi: 10.3390/jpm14080874.

Abstract

Functional electrical stimulation (FES) is a rehabilitation and assistive technique used for stroke survivors. FES systems mainly consist of sensors, a control algorithm, and a stimulation unit. However, there is a critical need to reassess sensing and control techniques in FES systems to enhance their efficiency. This SLR was carried out following the PRISMA 2020 statement. Four databases (PubMed, Scopus, Web of Science, Wiley Online Library) from 2010 to 2024 were searched using terms related to sensing and control strategies in FES systems. A total of 322 articles were chosen in the first stage, while only 60 of them remained after the final filtering stage. This systematic review mainly focused on sensor techniques and control strategies to deliver FES. The most commonly used sensors reported were inertial measurement units (IMUs), 45% (27); biopotential electrodes, 36.7% (22); vision-based systems, 18.3% (11); and switches, 18.3% (11). The control strategy most reported is closed-loop; however, most of the current commercial FES systems employ open-loop strategies due to their simplicity. Three main factors were identified that should be considered when choosing a sensor for gait-oriented FES systems: wearability, accuracy, and affordability. We believe that the combination of computer vision systems with artificial intelligence-based control algorithms can contribute to the development of minimally invasive and personalized FES systems for the gait rehabilitation of patients with FDS.

摘要

功能性电刺激(FES)是一种用于中风幸存者的康复和辅助技术。FES系统主要由传感器、控制算法和刺激单元组成。然而,迫切需要重新评估FES系统中的传感和控制技术,以提高其效率。本系统文献综述是按照PRISMA 2020声明进行的。使用与FES系统中的传感和控制策略相关的术语,对2010年至2024年的四个数据库(PubMed、Scopus、Web of Science、Wiley Online Library)进行了检索。在第一阶段共筛选出322篇文章,而在最终筛选阶段后仅剩下60篇。本系统综述主要关注用于提供FES的传感器技术和控制策略。报告中最常用的传感器是惯性测量单元(IMU),占45%(27篇);生物电位电极,占36.7%(22篇);基于视觉的系统,占18.3%(11篇);以及开关,占18.3%(11篇)。报告最多的控制策略是闭环;然而,由于其简单性,目前大多数商业FES系统采用开环策略。确定了在为面向步态的FES系统选择传感器时应考虑的三个主要因素:可穿戴性、准确性和可承受性。我们认为,将计算机视觉系统与基于人工智能的控制算法相结合,有助于开发用于足下垂患者步态康复的微创和个性化FES系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b45/11355777/6ed8f1100aa4/jpm-14-00874-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验