Sun Chen, Yao Mengchao, Xiong Ruiqi, Su Yang, Zhu Binglin, Chen Yong-Cong, Ao Ping
Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China.
School of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
Entropy (Basel). 2024 Jul 26;26(8):631. doi: 10.3390/e26080631.
How did the complex structure of the telencephalon evolve? Existing explanations are based on phenomena and lack a first-principles account. The Darwinian dynamics and endogenous network theory-established decades ago-provides a mathematical and theoretical framework and a general constitutive structure for theory-experiment coupling for answering this question from a first-principles perspective. By revisiting a gene network that explains the anterior-posterior patterning of the vertebrate telencephalon, we found that upon increasing the cooperative effect within this network, fixed points gradually evolve, accompanied by the occurrence of two bifurcations. The dynamic behavior of this network is informed by the knowledge obtained from experiments on telencephalic evolution. Our work provides a quantitative explanation for how telencephalon anterior-posterior patterning evolved from the pre-vertebrate chordate to the vertebrate and provides a series of verifiable predictions from a first-principles perspective.
端脑的复杂结构是如何演化的?现有的解释基于现象,缺乏第一性原理的阐述。几十年前建立的达尔文动力学和内源性网络理论提供了一个数学和理论框架,以及一个理论-实验耦合的一般构成结构,用于从第一性原理的角度回答这个问题。通过重新审视一个解释脊椎动物端脑前后模式形成的基因网络,我们发现,随着该网络内协同效应的增加,不动点逐渐演化,并伴随着两次分岔的出现。这个网络的动态行为是由从端脑进化实验中获得的知识所决定的。我们的工作为端脑前后模式如何从脊椎动物前的脊索动物演化到脊椎动物提供了定量解释,并从第一性原理的角度提供了一系列可验证的预测。