Hołyst Robert, Żuk Paweł J, Maciołek Anna, Makuch Karol, Giżyński Konrad
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland.
Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstr. 3, D-70569 Stuttgart, Germany.
Entropy (Basel). 2024 Aug 22;26(8):713. doi: 10.3390/e26080713.
We consider three different systems in a heat flow: an ideal gas, a van der Waals gas, and a binary mixture of ideal gases. We divide each system internally into two subsystems by a movable wall. We show that the direction of the motion of the wall, after release, under constant boundary conditions, is determined by the same inequality as in equilibrium thermodynamics dU-đQ≤0. The only difference between the equilibrium and non-equilibrium laws is the dependence of the net heat change, đQ, on the state parameters of the system. We show that the same inequality is valid when introducing the gravitational field in the case of both the ideal gas and the van der Waals gas in the heat flow. It remains true when we consider a thick wall permeable to gas particles and derive Archimedes' principle in the heat flow. Finally, we consider the Couette (shear) flow of the ideal gas. In this system, the direction of the motion of the internal wall follows from the inequality dE-đQ-đWs≤0, where dE is the infinitesimal change in total energy (internal plus kinetic) and đWs is the infinitesimal work exchanged with the environment due to the shear force imposed on the flowing gas. Ultimately, we synthesize all these cases within a general framework of the second law of non-equilibrium thermodynamics.
理想气体、范德瓦尔斯气体和理想气体的二元混合物。我们通过一个可移动壁将每个系统内部划分为两个子系统。我们表明,在恒定边界条件下释放后,壁的运动方向由与平衡热力学中相同的不等式dU - đQ≤0决定。平衡定律和非平衡定律之间的唯一区别在于净热变化đQ对系统状态参数的依赖性。我们表明,在热流中理想气体和范德瓦尔斯气体引入引力场时,相同的不等式仍然成立。当我们考虑对气体粒子可渗透的厚壁并在热流中推导阿基米德原理时,该不等式依然成立。最后,我们考虑理想气体的库埃特(剪切)流。在这个系统中,内壁的运动方向由不等式dE - đQ - đWs≤0得出,其中dE是总能量(内能加动能)的无穷小变化,đWs是由于对流动气体施加剪切力而与环境交换的无穷小功。最终,我们在非平衡热力学第二定律的一般框架内综合了所有这些情况。