Suppr超能文献

基于序列分型与下一代测序技术进行HLA分型的风险及周转时间的比较评估

Comparative Assessment of Risk and Turn-Around Time between Sequence-Based Typing and Next-Generation Sequencing for HLA Typing.

作者信息

Cha Jaehyun, Hur Mina, Kim Hanah, Yun Seunggyu, Nam Myunghyun, Cho Yunjung, Nam Minjeong

机构信息

Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea.

Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea.

出版信息

Diagnostics (Basel). 2024 Aug 16;14(16):1793. doi: 10.3390/diagnostics14161793.

Abstract

This study compared laboratory risk and turn-around time (TAT) between sequence-based typing (SBT) and next-generation sequencing (NGS) for human leukocyte antigen (HLA) typing. For risk assessment, we utilized the risk priority number (RPN) score based on failure mode and effect analysis (FMEA) and a risk acceptability matrix (RAM) according to the Clinical Laboratory Standards Institute (CLSI) guidelines (EP23-A). Total TAT was documented for the analytical phase, and hands-on time was defined as manual processes conducted by medical technicians. NGS showed a significantly higher total RPN score than SBT (1169 vs. 465). NGS indicated a higher mean RPN score, indicating elevated severity and detectability scores in comparison to SBT (RPN 23 vs. 12, = 0.001; severity 5 vs. 3, = 0.005; detectability 5 vs. 4, < 0.001, respectively). NGS required a greater number of steps than SBT (44 vs. 25 steps), all of which were acceptable for the RAM. NGS showed a longer total TAT, total hands-on time, and hands-on time per step than SBT (26:47:20 vs. 12:32:06, 03:59:35 vs. 00:47:39, 00:05:13 vs. 00:01:54 hh:mm:ss, respectively). Transitioning from SBT to NGS for HLA typing involves increased risk and an extended TAT. This study underscored the importance of evaluating these factors to optimize laboratory efficiency in HLA typing.

摘要

本研究比较了基于序列的分型(SBT)和下一代测序(NGS)用于人类白细胞抗原(HLA)分型时的实验室风险和周转时间(TAT)。对于风险评估,我们采用了基于失效模式与效应分析(FMEA)的风险优先数(RPN)评分以及根据临床实验室标准协会(CLSI)指南(EP23 - A)制定的风险可接受性矩阵(RAM)。记录了分析阶段的总周转时间,实操时间定义为医学技术人员进行的手工操作过程。NGS的总RPN评分显著高于SBT(1169对465)。NGS的平均RPN评分更高,表明与SBT相比,严重程度和可检测性评分升高(RPN分别为23对12,P = 0.001;严重程度5对3,P = 0.005;可检测性5对4,P < 0.001)。NGS比SBT需要更多步骤(44步对25步),所有这些步骤对于RAM都是可接受的。NGS的总周转时间、总实操时间和每步实操时间均比SBT长(分别为26:47:20对12:32:06、03:59:35对00:47:39、00:05:13对00:01:54 hh:mm:ss)。从SBT转换为NGS进行HLA分型会增加风险并延长周转时间。本研究强调了评估这些因素以优化HLA分型实验室效率的重要性。

相似文献

6
Identification and characterization of novel HLA alleles: Utility of next-generation sequencing methods.
Hum Immunol. 2016 Apr;77(4):313-6. doi: 10.1016/j.humimm.2016.01.001. Epub 2016 Jan 4.
7
[Exclusion of HLA-C Genotype with Zero Mismatched PCR-SBT Results by Next Generation Sequencing].
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2022 Aug;30(4):1213-1218. doi: 10.19746/j.cnki.issn.1009-2137.2022.04.038.
9
Super high resolution for single molecule-sequence-based typing of classical HLA loci at the 8-digit level using next generation sequencers.
Tissue Antigens. 2012 Oct;80(4):305-16. doi: 10.1111/j.1399-0039.2012.01941.x. Epub 2012 Aug 4.

本文引用的文献

2
The history and evolution of HLA typing external proficiency testing schemes in UK NEQAS for H&I.
Front Genet. 2023 Sep 18;14:1272618. doi: 10.3389/fgene.2023.1272618. eCollection 2023.
3
4
Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases.
Mol Cells. 2023 Feb 28;46(2):120-129. doi: 10.14348/molcells.2023.0002. Epub 2023 Feb 22.
5
Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy.
Mol Cells. 2022 Aug 31;45(8):513-521. doi: 10.14348/molcells.2022.2056. Epub 2022 Jul 27.
9
Challenges in the application of NGS in the clinical laboratory.
Hum Immunol. 2021 Nov;82(11):812-819. doi: 10.1016/j.humimm.2021.03.011. Epub 2021 Apr 21.
10
Benefits of VISION Max automated cross-matching in comparison with manual cross-matching: A multidimensional analysis.
PLoS One. 2019 Dec 23;14(12):e0226477. doi: 10.1371/journal.pone.0226477. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验