Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China.
Genes (Basel). 2024 Jul 31;15(8):1004. doi: 10.3390/genes15081004.
Understanding the correlation between genotype and phenotype remains challenging for modern genetics. Digenic network analysis may provide useful models for understanding complex phenotypes that traditional Mendelian monogenic models cannot explain. Clinical data, whole exome sequencing data, in silico, and machine learning analysis were combined to construct a digenic network that may help unveil the complex genotype-phenotype correlations in a child presenting with inherited seizures and thrombocytopenia. The proband inherited a maternal heterozygous missense variant in (NM_001165963.4:c.2722G>A) and a paternal heterozygous missense variant in (NM_002473.6:c.3323A>C). In silico analysis showed that these two variants may be pathogenic for inherited seizures and thrombocytopenia in the proband. Moreover, focusing on 230 epilepsy-associated genes and 35 thrombopoiesis genes, variant call format data of the proband were analyzed using machine learning tools (VarCoPP 2.0) and Digenic Effect predictor. A digenic network was constructed, and and were found to be core genes in the network. Further analysis showed that might be a modifier of , and the variant in might not only influence the severity of -related seizure but also lead to thrombocytopenia in the bone marrow. In addition, another eight variants might also be co-factors that account for the proband's complex phenotypes. Our data show that as a supplement to the traditional Mendelian monogenic model, digenic network analysis may provide reasonable models for the explanation of complex genotype-phenotype correlations.
理解基因型和表型之间的相关性对于现代遗传学来说仍然具有挑战性。二基因网络分析可能为理解传统孟德尔单基因模型无法解释的复杂表型提供有用的模型。临床数据、全外显子组测序数据、计算和机器学习分析相结合,构建了一个二基因网络,可能有助于揭示一个患有遗传性癫痫和血小板减少症的儿童的复杂基因型-表型相关性。先证者遗传了母亲杂合错义变异 (NM_001165963.4:c.2722G>A) 和父亲杂合错义变异 (NM_002473.6:c.3323A>C) 在 中。计算分析表明,这两个变异可能是先证者遗传性癫痫和血小板减少症的致病因素。此外,关注 230 个与癫痫相关的基因和 35 个与血小板生成相关的基因,使用机器学习工具(VarCoPP 2.0)和二基因效应预测器对先证者的变异调用格式数据进行分析。构建了一个二基因网络,发现 和 是网络中的核心基因。进一步分析表明, 可能是 的修饰因子, 中的变异不仅可能影响与相关的癫痫发作的严重程度,而且可能导致骨髓中的血小板减少症。此外,另外八个变体也可能是导致先证者复杂表型的共同因素。我们的数据表明,作为传统孟德尔单基因模型的补充,二基因网络分析可能为解释复杂的基因型-表型相关性提供合理的模型。
Zhonghua Er Ke Za Zhi. 2012-8
Eur J Paediatr Neurol. 2021-7
Methods Mol Biol. 2025
Nucleic Acids Res. 2024-1-5
BMC Bioinformatics. 2023-5-1
Genes (Basel). 2022-11-3
Blood Res. 2022-4-30
Database (Oxford). 2022-4-12
Curr Opin Pediatr. 2021-12-1