Sharma Jyoti, Goel Prabudh
Department of Paediatric Surgery, All India Institute of Medical Sciences, New Delhi, India.
Methods Mol Biol. 2025;2952:369-410. doi: 10.1007/978-1-0716-4690-8_21.
The mapping of genotypes to phenotypes is a cornerstone of genetics, critical for understanding disease mechanisms and advancing precision medicine. The advent of next-generation sequencing (NGS) technologies has enabled the generation of extensive genomic datasets, yet the complexity and scale of these data demand innovative analytical approaches. Artificial intelligence (AI) has emerged as a transformative tool, integrating genotype and phenotype data, uncovering intricate patterns, and driving advancements in diagnosis, therapy, and research.AI applications in phenotype-genotype mapping span various machine learning and deep learning techniques. Supervised learning methods, such as Support Vector Machines (SVMs), Random Forests, and Gradient Boosting, predict variant pathogenicity and classify genetic risks by leveraging curated datasets. Unsupervised approaches, including k-Means clustering and hierarchical clustering, uncover hidden patterns in data, enabling the identification of disease subtypes and novel associations. Dimensionality reduction techniques like Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE) simplify high-dimensional genomic data for analysis and visualization. Neural networks, including Convolutional and Recurrent Neural Networks (CNNs and RNNs), excel at extracting insights from complex datasets like gene expression profiles and genomic sequences. These methodologies have found applications in rare disease diagnosis, drug discovery, and risk assessment for complex diseases. AI tools integrate genetic and phenotypic data to prioritize pathogenic variants, significantly improving diagnostic yields for unresolved cases. Multi-omic data integration, incorporating genomics, transcriptomics, and proteomics, offers a holistic perspective on genotype-phenotype relationships. In drug discovery, AI identifies therapeutic targets and predicts drug efficacy, accelerating the development of precision treatments.Despite its potential, challenges persist. Data heterogeneity, limited interpretability of AI models, privacy concerns, and insufficient datasets for rare diseases impede broader implementation. To address these issues, AI frameworks incorporate data standardization, explainability techniques like SHAP and LIME, federated learning for secure collaborative research, and data augmentation methods such as transfer learning and GANs. Future directions include the integration of multi-omic data, advanced explainable AI for clinical adoption, and the expansion of federated learning to facilitate cross-institutional collaborations. By bridging the gap between genotype and phenotype, AI-driven methodologies are transforming clinical genomics and personalized medicine. This chapter explores the methodologies, applications, challenges, and future prospects of AI in phenotype-genotype mapping, highlighting its pivotal role in advancing genetic research and improving healthcare outcomes.
基因型到表型的映射是遗传学的基石,对于理解疾病机制和推动精准医学发展至关重要。下一代测序(NGS)技术的出现使得大量基因组数据集得以生成,但这些数据的复杂性和规模需要创新的分析方法。人工智能(AI)已成为一种变革性工具,它整合基因型和表型数据,揭示复杂模式,并推动诊断、治疗和研究的进步。
AI在表型-基因型映射中的应用涵盖各种机器学习和深度学习技术。监督学习方法,如支持向量机(SVM)、随机森林和梯度提升,通过利用经过整理的数据集来预测变异致病性并对遗传风险进行分类。无监督方法,包括k均值聚类和层次聚类,揭示数据中的隐藏模式,从而能够识别疾病亚型和新的关联。主成分分析(PCA)和t分布随机邻域嵌入(t-SNE)等降维技术简化了高维基因组数据,便于分析和可视化。神经网络,包括卷积神经网络和循环神经网络(CNN和RNN),擅长从基因表达谱和基因组序列等复杂数据集中提取见解。这些方法已应用于罕见病诊断、药物发现和复杂疾病的风险评估。AI工具整合遗传和表型数据,对致病性变异进行优先级排序,显著提高未解决病例的诊断率。多组学数据整合,包括基因组学、转录组学和蛋白质组学,提供了对基因型-表型关系的整体视角。在药物发现中,AI识别治疗靶点并预测药物疗效,加速精准治疗的开发。
尽管具有潜力,但挑战依然存在。数据异质性、AI模型的有限可解释性、隐私问题以及罕见病数据集不足阻碍了更广泛的应用。为了解决这些问题,AI框架纳入了数据标准化、SHAP和LIME等可解释性技术、用于安全协作研究的联邦学习以及迁移学习和生成对抗网络(GAN)等数据增强方法。未来的方向包括多组学数据的整合、用于临床应用的先进可解释AI以及扩展联邦学习以促进跨机构合作。通过弥合基因型和表型之间的差距,AI驱动的方法正在改变临床基因组学和个性化医学。本章探讨了AI在表型-基因型映射中的方法、应用、挑战和未来前景,突出了其在推进遗传研究和改善医疗结果方面的关键作用。
Methods Mol Biol. 2025
Methods Mol Biol. 2025
Acc Chem Res. 2025-6-17
J Pharmacokinet Pharmacodyn. 2025-6-16
J Med Internet Res. 2025-6-23
J Mater Chem B. 2025-6-18
BioData Min. 2024-10-2
Bioinformatics. 2024-10-1
Dis Model Mech. 2024-6-1
EClinicalMedicine. 2024-5-27