文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于大环的超分子药物传递系统:简要综述。

Macrocycle-Based Supramolecular Drug Delivery Systems: A Concise Review.

机构信息

College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai Tibet Plateau, Southwest Minzu University, Chengdu 610041, China.

College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China.

出版信息

Molecules. 2024 Aug 12;29(16):3828. doi: 10.3390/molecules29163828.


DOI:10.3390/molecules29163828
PMID:39202907
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11357536/
Abstract

Efficient delivery of therapeutic agents to the lesion site or specific cells is an important way to achieve "toxicity reduction and efficacy enhancement". Macrocycles have always provided many novel ideas for drug or gene loading and delivery processes. Specifically, macrocycles represented by crown ethers, cyclodextrins, cucurbit[n]urils, calix[n]arenes, and pillar[n]arenes have unique properties, which are different cavity structures, good biocompatibility, and good stability. Benefited from these diverse properties, a variety of supramolecular drug delivery systems can be designed and constructed to effectively improve the physical and chemical properties of guest molecules as needed. This review provides an outlook on the current application status and main limitations of macrocycles in supramolecular drug delivery systems.

摘要

高效地将治疗剂递送到病变部位或特定细胞是实现“降低毒性和提高疗效”的重要途径。大环化合物一直为药物或基因负载和递药过程提供了许多新颖的思路。具体来说,冠醚、环糊精、瓜环、杯芳烃和柱芳烃等以大环为代表的化合物具有独特的性质,如不同的空腔结构、良好的生物相容性和稳定性。得益于这些多样化的性质,可以设计和构建各种超分子药物传递系统,以有效地根据需要改善客体分子的物理和化学性质。本文综述了大环在超分子药物传递系统中的应用现状和主要局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/396a5a4808af/molecules-29-03828-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/9fad677c67c9/molecules-29-03828-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/ca4850c8c632/molecules-29-03828-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/84b554b3b0b5/molecules-29-03828-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/bc210ec77045/molecules-29-03828-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/964d78fda220/molecules-29-03828-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/8af18d368197/molecules-29-03828-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/008c41e6356e/molecules-29-03828-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/f821ed5648fc/molecules-29-03828-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/a0b53dc06481/molecules-29-03828-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/db925dbf93a0/molecules-29-03828-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/5ad384bb941f/molecules-29-03828-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/01732ede8a17/molecules-29-03828-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/4117e25ebe6e/molecules-29-03828-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/8f3d7959d603/molecules-29-03828-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/2446b4745f99/molecules-29-03828-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/61b71dce8d77/molecules-29-03828-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/bb2466cd9362/molecules-29-03828-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/84a2276cc675/molecules-29-03828-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/6338a8ca54e3/molecules-29-03828-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/cbca52a1253d/molecules-29-03828-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/0c7b06f71e30/molecules-29-03828-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/396a5a4808af/molecules-29-03828-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/9fad677c67c9/molecules-29-03828-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/ca4850c8c632/molecules-29-03828-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/84b554b3b0b5/molecules-29-03828-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/bc210ec77045/molecules-29-03828-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/964d78fda220/molecules-29-03828-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/8af18d368197/molecules-29-03828-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/008c41e6356e/molecules-29-03828-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/f821ed5648fc/molecules-29-03828-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/a0b53dc06481/molecules-29-03828-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/db925dbf93a0/molecules-29-03828-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/5ad384bb941f/molecules-29-03828-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/01732ede8a17/molecules-29-03828-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/4117e25ebe6e/molecules-29-03828-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/8f3d7959d603/molecules-29-03828-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/2446b4745f99/molecules-29-03828-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/61b71dce8d77/molecules-29-03828-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/bb2466cd9362/molecules-29-03828-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/84a2276cc675/molecules-29-03828-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/6338a8ca54e3/molecules-29-03828-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/cbca52a1253d/molecules-29-03828-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/0c7b06f71e30/molecules-29-03828-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dde1/11357536/396a5a4808af/molecules-29-03828-g022.jpg

相似文献

[1]
Macrocycle-Based Supramolecular Drug Delivery Systems: A Concise Review.

Molecules. 2024-8-12

[2]
Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications.

Acc Chem Res. 2014-3-25

[3]
An overview from simple host-guest systems to progressively complex supramolecular assemblies.

Phys Chem Chem Phys. 2021-12-1

[4]
Supramolecular Biopharmaceutical Carriers Based on Host-Guest Interactions.

J Agric Food Chem. 2022-10-12

[5]
Macrocyclic Supramolecular Assemblies Based on Hyaluronic Acid and Their Biological Applications.

Acc Chem Res. 2022-12-6

[6]
Pillararene-Inspired Macrocycles: From Extended Pillar[]arenes to Geminiarenes.

Acc Chem Res. 2022-11-1

[7]
Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry.

Chem Rev. 2016-6-23

[8]
Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.

Acc Chem Res. 2014-6-17

[9]
Stimuli-Responsive Supramolecular Assemblies Constructed from Pillar[ n]arenes.

Acc Chem Res. 2018-7-17

[10]
Metal nanoparticles and supramolecular macrocycles: a tale of synergy.

Chemistry. 2014-8-25

引用本文的文献

[1]
A Review of Formulation Strategies for Cyclodextrin-Enhanced Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs).

Int J Mol Sci. 2025-7-6

本文引用的文献

[1]
Cucurbit[8]uril-based supramolecular theranostics.

J Nanobiotechnology. 2024-5-9

[2]
Constructing artificial gap junctions to mediate intercellular signal and mass transport.

Nat Chem. 2024-9

[3]
Polymeric Nanoparticles for Drug Delivery.

Chem Rev. 2024-5-8

[4]
Expanding the Hydrophobic Cavity Surface of Azocalix[4]arene to Enable Biotin/Avidin Affinity with Controlled Release.

Angew Chem Int Ed Engl. 2024-6-3

[5]
Engineered cyclodextrin-based supramolecular hydrogels for biomedical applications.

J Mater Chem B. 2023-12-22

[6]
Hypoxia and Matrix Metalloproteinase 13-Responsive Hydrogel Microspheres Alleviate Osteoarthritis Progression In Vivo.

Small. 2024-5

[7]
Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products.

Carbohydr Polym. 2024-1-15

[8]
Supramolecular nanomedicines based on host-guest interactions of cyclodextrins.

Exploration (Beijing). 2023-5-28

[9]
Cystic Fibrosis.

N Engl J Med. 2023-11-2

[10]
The design strategy for pillararene based active targeted drug delivery systems.

Chem Commun (Camb). 2023-10-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索