Suppr超能文献

镧优化的LiFePO复合颗粒的分子晶体结构模拟及结构-磁性能

Molecular Crystal Structure Simulations and Structure-Magnetic Properties of LiFePO Composite Particles Optimized by La.

作者信息

Lin Qing, Su Kaimin, Huang Yajun, He Yun, Zhang Jianbiao, Yang Xingxing, Xu Huiren

机构信息

College of Biomedical Information and Engineering, Hainan Medical University, Haikou 571199, China.

Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.

出版信息

Molecules. 2024 Aug 20;29(16):3933. doi: 10.3390/molecules29163933.

Abstract

In this study LiFePO/C composite particles were synthesized using five different carbon sources via a one-step sol-gel method. La-doped LiFePO was also synthesized using the sol-gel method. The XRD pattern of LiLaFePO ( = 0.91.0, = 00.1) after being calcined at 700 °C for 10 h indicates that as the doping ratio increased, the sample's cell volume first increased then decreased, reaching a maximum value of 293.36 Å ( = 0.94, = 0.06). The XRD patterns of LiLaFePO after being calcined at different temperatures for 10 h indicate that with increasing calcination temperature, the (311) diffraction peak drifted toward a smaller diffraction angle. Similarly, the XRD patterns of LiLaFePO after being calcined at 700 °C for different durations indicate that with increasing calcination times, the (311) diffraction peak drifted toward a larger diffraction angle. The infrared spectrum pattern of LiLaFePO ( = 0.91.0, = 00.1) after being calcined at 700 °C for 10 h shows absorption peaks corresponding to the vibrations of the Li-O bond and PO group. An SEM analysis of LiLaFePO ( = 1, = 0; = 0.96, = 0.04; = 0.92, = 0.08) after being calcined at 700 °C for 10 h indicates that the particles were irregular in shape and of uniform size. The hysteresis loops of LiLaFePO after being calcined at 600 °C, 700 °C, or 800 °C for 10 h indicate that with increasing calcination temperature, the Ms gradually increased, while the Mr and Hc decreased, with minimum values of 0.08 emu/g and 58.21 Oe, respectively. The Mössbauer spectra of LiLaFePO ( = 1, = 0; = 0.96, = 0.04; = 0.92, = 0.08) after being calcined at 700 °C for 10 h indicate that all samples contained Doublet(1) and Doublet(2) peaks, dominated by Fe compounds. The proportions of Fe were 85.5% ( = 1, = 0), 89.9% ( = 0.96, = 0.04), and 96.0% ( = 0.92, = 0.08). The maximum IS and QS of Doublet(1) for the three samples were 1.224 mm/s and 2.956 mm/s, respectively.

摘要

在本研究中,采用一步溶胶 - 凝胶法使用五种不同的碳源合成了LiFePO/C复合颗粒。还通过溶胶 - 凝胶法合成了La掺杂的LiFePO。在700℃下煅烧10小时后的LiLaFePO(α = 0.91.0,β = 00.1)的XRD图谱表明,随着掺杂比例的增加,样品的晶胞体积先增大后减小,在α = 0.94,β = 0.06时达到最大值293.36 Å。在不同温度下煅烧10小时后的LiLaFePO的XRD图谱表明,随着煅烧温度的升高,(311)衍射峰向较小的衍射角漂移。同样,在700℃下煅烧不同时间后的LiLaFePO的XRD图谱表明,随着煅烧时间的增加,(311)衍射峰向较大的衍射角漂移。在700℃下煅烧10小时后的LiLaFePO(α = 0.91.0,β = 00.1)的红外光谱图显示了与Li - O键和PO基团振动相对应的吸收峰。对在700℃下煅烧10小时后的LiLaFePO(α = 1,β = 0;α = 0.96,β = 0.04;α = 0.92,β = 0.08)的SEM分析表明,颗粒形状不规则但尺寸均匀。在600℃、700℃或800℃下煅烧10小时后的LiLaFePO的磁滞回线表明,随着煅烧温度的升高,Ms逐渐增加,而Mr和Hc减小,最小值分别为0.08 emu/g和58.21 Oe。在700℃下煅烧10小时后的LiLaFePO(α = 1,β = 0;α = 0.96,β = 0.04;α = 0.92,β = 0.08)的穆斯堡尔谱表明,所有样品都包含双峰(1)和双峰(2)峰,以Fe化合物为主。Fe的比例分别为85.5%(α = 1,β = 0)、89.9%(α = 0.96,β = 0.04)和96.0%(α = 0.92,β = 0.08)。三个样品的双峰(1)的最大IS和QS分别为1.224 mm/s和2.956 mm/s。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/512a/11357034/290f23fbb87a/molecules-29-03933-g001.jpg

相似文献

2
Structure and Magnetic Properties of AO and LiFePO/C Composites by Sol-Gel Combustion Method.
Molecules. 2023 Feb 19;28(4):1970. doi: 10.3390/molecules28041970.
6
A Novel Strategy for the Synthesis of Fe(PO) Using Fe-P Waste Slag and CO Followed by Its Use as the Precursor for LiFePO Preparation.
ACS Omega. 2019 Jun 6;4(6):9932-9938. doi: 10.1021/acsomega.9b01074. eCollection 2019 Jun 30.
8
Preparation and characterization of Zn(0.9)Mg(0.1)TiO3via electrospinning.
Dalton Trans. 2011 Sep 7;40(33):8335-9. doi: 10.1039/c1dt10737b. Epub 2011 Jul 12.
10
Synthesis and characterization of LiFePO4/C cathode materials by sol-gel method.
J Nanosci Nanotechnol. 2014 Sep;14(9):7060-5. doi: 10.1166/jnn.2014.8920.

本文引用的文献

1
A Multifunctional Amino Acid Enables Direct Recycling of Spent LiFePO Cathode Material.
Adv Mater. 2024 Feb;36(5):e2309722. doi: 10.1002/adma.202309722. Epub 2023 Dec 5.
2
Modification of the LiFePO (010) Surface Due to Exposure to Atmospheric Gases.
ACS Appl Mater Interfaces. 2021 Jun 23;13(24):29034-29040. doi: 10.1021/acsami.1c01394. Epub 2021 Jun 12.
3
Three-Dimensional (3D) Nanostructured Skeleton Substrate Composed of Hollow Carbon Fiber/Carbon Nanosheet/ZnO for Stable Lithium Anode.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):3078-3088. doi: 10.1021/acsami.0c21747. Epub 2021 Jan 5.
5
High-efficiency core-shell magnetic heavy-metal absorbents derived from spent-LiFePO Battery.
J Hazard Mater. 2021 Jan 15;402:123583. doi: 10.1016/j.jhazmat.2020.123583. Epub 2020 Aug 29.
6
Revealing Insights into LiFePO Nanocrystals with Magnetic Order at Room Temperature Resulting in Trapping of Li Ions.
J Phys Chem Lett. 2019 Sep 5;10(17):4794-4799. doi: 10.1021/acs.jpclett.9b01557. Epub 2019 Aug 9.
7
Bragg's Law diffraction simulations for electron backscatter diffraction analysis.
Ultramicroscopy. 2009 Aug;109(9):1148-56. doi: 10.1016/j.ultramic.2009.04.007. Epub 2009 May 27.
8
FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries.
Spectrochim Acta A Mol Biomol Spectrosc. 2006 Dec;65(5):1007-13. doi: 10.1016/j.saa.2006.01.019. Epub 2006 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验