Suppr超能文献

基于机器学习算法的二氧化碳腐蚀速率和严重程度预测模型的开发

Development of a Predictive Model for Carbon Dioxide Corrosion Rate and Severity Based on Machine Learning Algorithms.

作者信息

Dong Zhenzhen, Zhang Min, Li Weirong, Wen Fenggang, Dong Guoqing, Zou Lu, Zhang Yongqiang

机构信息

College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China.

Shaanxi Key Laboratory of Carbon Dioxide Sequestration and Enhanced Oil Recovery, Xi'an 710075, China.

出版信息

Materials (Basel). 2024 Aug 14;17(16):4046. doi: 10.3390/ma17164046.

Abstract

Carbon dioxide corrosion is a pervasive issue in pipelines and the petroleum industry, posing substantial risks to equipment safety and longevity. Accurate prediction of corrosion rates and severity is essential for effective material selection and equipment maintenance. This paper begins by addressing the limitations of traditional corrosion prediction methods and explores the application of machine learning algorithms in CO2 corrosion prediction. Conventional models often fail to capture the complex interactions among multiple factors, resulting in suboptimal prediction accuracy, limited adaptability, and poor generalization. To overcome these limitations, this study systematically organized and analyzed the data, performed a correlation analysis of the data features, and examined the factors influencing corrosion. Subsequently, prediction models were developed using six algorithms: Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), XGBoost, and LightGBM. The results revealed that SVM exhibited the lowest performance on both training and test sets, while RF achieved the best results with R values of 0.92 for the training set and 0.88 for the test set. In the classification of corrosion severity, RF, LightGBM, SVM, and KNN were utilized, with RF demonstrating superior performance, achieving an accuracy of 99% and an F1-score of 0.99. This study highlights that machine learning algorithms, particularly Random Forest, offer substantial potential for predicting and classifying CO2 corrosion. These algorithms provide innovative approaches and valuable insights for practical applications, enhancing predictive accuracy and operational efficiency in corrosion management.

摘要

二氧化碳腐蚀是管道和石油行业中普遍存在的问题,对设备安全和使用寿命构成重大风险。准确预测腐蚀速率和严重程度对于有效的材料选择和设备维护至关重要。本文首先阐述了传统腐蚀预测方法的局限性,并探讨了机器学习算法在二氧化碳腐蚀预测中的应用。传统模型往往无法捕捉多个因素之间的复杂相互作用,导致预测精度欠佳、适应性有限且泛化能力差。为克服这些局限性,本研究对数据进行了系统的整理和分析,对数据特征进行了相关性分析,并研究了影响腐蚀的因素。随后,使用六种算法开发了预测模型:随机森林(RF)、K近邻(KNN)、梯度提升决策树(GBDT)、支持向量机(SVM)、XGBoost和LightGBM。结果表明,SVM在训练集和测试集上的性能均最低,而RF取得了最佳结果,训练集的R值为0.92,测试集的R值为0.88。在腐蚀严重程度分类中,使用了RF、LightGBM、SVM和KNN,其中RF表现出卓越性能,准确率达到99%,F1分数为0.99。本研究强调,机器学习算法,尤其是随机森林,在预测和分类二氧化碳腐蚀方面具有巨大潜力。这些算法为实际应用提供了创新方法和宝贵见解,提高了腐蚀管理中的预测准确性和运营效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/654d/11356124/77923211168b/materials-17-04046-g001.jpg

相似文献

2
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
BMC Public Health. 2024 Jun 28;24(1):1728. doi: 10.1186/s12889-024-19196-0.
4
Machine learning constructs a diagnostic prediction model for calculous pyonephrosis.
Urolithiasis. 2024 Jun 19;52(1):96. doi: 10.1007/s00240-024-01587-y.
8
[Constructing a predictive model for the death risk of patients with septic shock based on supervised machine learning algorithms].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024 Apr;36(4):345-352. doi: 10.3760/cma.j.cn121430-20230930-00832.

引用本文的文献

本文引用的文献

1
A Review of Recent Advances in the Inhibition of Sweet Corrosion.
Chem Rec. 2021 Jul;21(7):1845-1875. doi: 10.1002/tcr.202100072. Epub 2021 May 24.
3
Improved Random Forest for Classification.
IEEE Trans Image Process. 2018 Aug;27(8):4012-4024. doi: 10.1109/TIP.2018.2834830. Epub 2018 May 10.
4
Ultraviolet protection factor of fabrics: comparison of laboratory and field-based measurements.
Photodermatol Photoimmunol Photomed. 2002 Jun;18(3):135-40. doi: 10.1034/j.1600-0781.2001.00739.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验