Suppr超能文献

与抗肿瘤药物诱导的口腔黏膜炎发生相关的核受体和应激反应途径

Nuclear Receptors and Stress Response Pathways Associated with the Development of Oral Mucositis Induced by Antineoplastic Agents.

作者信息

Kagaya Moena, Uesawa Yoshihiro

机构信息

Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.

出版信息

Pharmaceuticals (Basel). 2024 Aug 20;17(8):1086. doi: 10.3390/ph17081086.

Abstract

Oral mucositis (OM) is one of the common adverse events associated with cancer treatment that decreases the quality of life and affects treatment outcomes. However, the medications used to manage OM are generally only palliative, and our knowledge of the syndrome is limited. The etiology of the syndrome is thought to be complex and multifactorial. We investigated the trends and characteristics of OM and estimated molecular initiating events (MIEs) associated with the development of the syndrome using the FDA Adverse Event Reporting System. The study of trends and characteristics suggested that OM is significantly more likely to occur in females and nonelderly patients and is likely to be induced by protein kinase inhibitors such as afatinib and everolimus. Next, we used Toxicity Predictor, an in-house quantitative structure-activity relationship system, to estimate OM-associated MIEs. The results revealed that the agonist activity of the human pregnane X receptor, thyroid-stimulating hormone-releasing hormone receptor, and androgen receptor may be associated with OM development. Our study findings are expected to help avoid the risk of OM induction during the drug discovery process and clinical use of antineoplastic agents.

摘要

口腔黏膜炎(OM)是癌症治疗相关的常见不良事件之一,它会降低生活质量并影响治疗效果。然而,用于治疗OM的药物通常只是姑息性的,而且我们对该综合征的了解有限。该综合征的病因被认为是复杂且多因素的。我们利用美国食品药品监督管理局不良事件报告系统,研究了OM的趋势和特征,并估计了与该综合征发生相关的分子起始事件(MIEs)。对趋势和特征的研究表明,OM在女性和非老年患者中发生的可能性显著更高,并且可能由阿法替尼和依维莫司等蛋白激酶抑制剂诱发。接下来,我们使用内部定量构效关系系统毒性预测器来估计与OM相关的MIEs。结果显示,人孕烷X受体、促甲状腺激素释放激素受体和雄激素受体的激动剂活性可能与OM的发生有关。我们的研究结果有望有助于在抗肿瘤药物的研发过程和临床使用中避免诱发OM的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c24/11358984/76983ca91dca/pharmaceuticals-17-01086-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验