Suppr超能文献

MnasNet-SimAM:一种用于在复杂真实田间环境中识别普通小麦病害的改进深度学习模型。

MnasNet-SimAM: An Improved Deep Learning Model for the Identification of Common Wheat Diseases in Complex Real-Field Environments.

作者信息

Wen Xiaojie, Maimaiti Muzaipaer, Liu Qi, Yu Fusheng, Gao Haifeng, Li Guangkuo, Chen Jing

机构信息

Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China.

Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China.

出版信息

Plants (Basel). 2024 Aug 22;13(16):2334. doi: 10.3390/plants13162334.

Abstract

Deep learning approaches have been widely applied for agricultural disease detection. However, considerable challenges still exist, such as low recognition accuracy in complex backgrounds and high misjudgment rates for similar diseases. This study aimed to address these challenges through the detection of six prevalent wheat diseases and healthy wheat in images captured in a complex natural context, evaluating the recognition performance of five lightweight convolutional networks. A novel model, named MnasNet-SimAM, was developed by combining transfer learning and an attention mechanism. The results reveal that the five lightweight convolutional neural networks can recognize the six different wheat diseases with an accuracy of more than 90%. The MnasNet-SimAM model attained an accuracy of 95.14%, which is 1.7% better than that of the original model, while only increasing the model's parameter size by 0.01 MB. Additionally, the MnasNet-SimAM model reached an accuracy of 91.20% on the public Wheat Fungi Diseases data set, proving its excellent generalization capacity. These findings reveal that the proposed model can satisfy the requirements for rapid and accurate wheat disease detection.

摘要

深度学习方法已被广泛应用于农业病害检测。然而,仍然存在相当大的挑战,例如在复杂背景下识别准确率低以及对相似病害的误判率高。本研究旨在通过检测在复杂自然环境中拍摄的图像中的六种常见小麦病害和健康小麦来应对这些挑战,评估五个轻量级卷积网络的识别性能。通过结合迁移学习和注意力机制,开发了一种名为MnasNet-SimAM的新型模型。结果表明,这五个轻量级卷积神经网络能够以超过90%的准确率识别六种不同的小麦病害。MnasNet-SimAM模型的准确率达到了95.14%,比原始模型高1.7%,而模型参数大小仅增加了0.01MB。此外,MnasNet-SimAM模型在公共小麦真菌病害数据集上的准确率达到了91.20%,证明了其出色的泛化能力。这些发现表明,所提出的模型能够满足快速准确检测小麦病害的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7710/11360691/384b7e16d52f/plants-13-02334-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验