A2VI-Lab, Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, 67100 L'Aquila, Italy.
Sensors (Basel). 2024 Aug 11;24(16):5207. doi: 10.3390/s24165207.
Brain-computer interfaces (BCIs) are pivotal in translating neural activities into control commands for external assistive devices. Non-invasive techniques like electroencephalography (EEG) offer a balance of sensitivity and spatial-temporal resolution for capturing brain signals associated with motor activities. This work introduces MOVING, a Multi-Modal dataset of EEG signals and Virtual Glove Hand Tracking. This dataset comprises neural EEG signals and kinematic data associated with three hand movements-open/close, finger tapping, and wrist rotation-along with a rest period. The dataset, obtained from 11 subjects using a 32-channel dry wireless EEG system, also includes synchronized kinematic data captured by a Virtual Glove (VG) system equipped with two orthogonal Leap Motion Controllers. The use of these two devices allows for fast assembly (∼1 min), although introducing more noise than the gold standard devices for data acquisition. The study investigates which frequency bands in EEG signals are the most informative for motor task classification and the impact of baseline reduction on gesture recognition. Deep learning techniques, particularly EEGnetV4, are applied to analyze and classify movements based on the EEG data. This dataset aims to facilitate advances in BCI research and in the development of assistive devices for people with impaired hand mobility. This study contributes to the repository of EEG datasets, which is continuously increasing with data from other subjects, which is hoped to serve as benchmarks for new BCI approaches and applications.
脑机接口(BCI)在将神经活动转化为外部辅助设备的控制命令方面起着关键作用。非侵入性技术,如脑电图(EEG),在捕获与运动活动相关的脑信号方面提供了灵敏度和时空分辨率的平衡。这项工作介绍了 MOVING,这是一个 EEG 信号和虚拟手套手跟踪的多模态数据集。该数据集包含神经 EEG 信号和与三个手部运动(打开/关闭、手指敲击和手腕旋转)以及休息期相关的运动学数据。该数据集是使用 32 通道干无线 EEG 系统从 11 名受试者中获得的,还包括由配备两个正交 Leap Motion 控制器的虚拟手套(VG)系统捕获的同步运动学数据。这两个设备的使用允许快速组装(约 1 分钟),尽管与用于数据采集的黄金标准设备相比,会引入更多噪声。该研究调查了 EEG 信号中的哪些频带对于运动任务分类最具信息量,以及基线减少对手势识别的影响。深度学习技术,特别是 EEGnetV4,被应用于基于 EEG 数据分析和分类运动。该数据集旨在促进 BCI 研究和为手部运动障碍患者开发辅助设备的进展。这项研究为 EEG 数据集的存储库做出了贡献,该存储库不断增加来自其他受试者的数据,希望这些数据能成为新的 BCI 方法和应用的基准。