Suppr超能文献

机器人SDF:用于机器人手臂的隐式形态建模

RobotSDF: Implicit Morphology Modeling for the Robotic Arm.

作者信息

Yang Yusheng, Liu Jiajia, Zhou Hongpeng, Kwabena Afimbo Reuben, Zhong Yuqiao, Xie Yangmin

机构信息

School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.

Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai 200444, China.

出版信息

Sensors (Basel). 2024 Aug 14;24(16):5248. doi: 10.3390/s24165248.

Abstract

The expression of robot arm morphology is a critical foundation for achieving effective motion planning and collision avoidance in robotic systems. Traditional geometry-based approaches usually suffer from the contradiction between the high demand for computing resources for fine expression and the insufficient detail expression caused by the pursuit of efficiency. The signed distance function addresses these drawbacks due to its ability to handle complex and arbitrary shapes and lower computational requirements. However, conventional robotic morphology methods based on the signed distance function often face challenges when the robot moves dynamically, since robots with different postures are modeled as independent individuals but the postures of robots are infinite. In this paper, we introduce RobotSDF, an implicit morphology modeling approach that can express the robot shape of arbitrary posture precisely. Instead of depicting a whole model of the robot arm, RobotSDF models the robot morphology as integrated implicit joint models driven by joint configurations. In this approach, the dynamic shape change process of the robot is converted into the coordinate transformations of query points within each joint's coordinate system. Experimental results with the Elfin robot demonstrate that RobotSDF can accurately depict robot shapes across different postures up to the millimeter level, which exhibits 38.65% and 66.24% improvement over the Neural-JSDF and configuration space distance field algorithms, respectively, in representing robot morphology. We further verified the efficiency of RobotSDF through collision avoidance in both simulation and actual human-robot collaboration experiments.

摘要

机器人手臂形态的表达是在机器人系统中实现有效运动规划和碰撞避免的关键基础。传统的基于几何的方法通常面临着精细表达对计算资源的高需求与追求效率导致的细节表达不足之间的矛盾。有符号距离函数因其能够处理复杂和任意形状以及较低的计算要求而解决了这些缺点。然而,基于有符号距离函数的传统机器人形态方法在机器人动态移动时常常面临挑战,因为具有不同姿态的机器人被建模为独立个体,但机器人的姿态是无限的。在本文中,我们介绍了RobotSDF,一种隐式形态建模方法,它可以精确地表达任意姿态的机器人形状。RobotSDF不是描绘机器人手臂的整个模型,而是将机器人形态建模为由关节配置驱动的集成隐式关节模型。在这种方法中,机器人的动态形状变化过程被转换为每个关节坐标系内查询点的坐标变换。使用Elfin机器人的实验结果表明,RobotSDF可以精确到毫米级别准确描绘不同姿态的机器人形状,在表示机器人形态方面,分别比Neural-JSDF和配置空间距离场算法提高了38.65%和66.24%。我们通过在模拟和实际人机协作实验中的碰撞避免进一步验证了RobotSDF的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25b7/11359239/7e83496e414b/sensors-24-05248-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验