Wang Nan, Li Bingqian, Jin Zhili, Wang Wei
School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
Sensors (Basel). 2024 Aug 16;24(16):5309. doi: 10.3390/s24165309.
The Advanced Geostationary Radiation Imager (AGRI) sensor on board the geostationary satellite Fengyun-4B (FY-4B) is capable of capturing particles in different phases in the atmospheric environment and acquiring aerosol observation data with high spatial and temporal resolution. To understand the quality of the Land Aerosol (LDA) product of AGRI and its application prospects, we conducted a comprehensive evaluation of the AGRI LDA AOD. Using the 550 nm AGRI LDA AOD (550 nm) of nearly 1 year (1 October 2022 to 30 September 2023) to compare with the Aerosol Robotic Network (AERONET), MODIS MAIAC, and Himawari-9/AHI AODs. Results show the erratic algorithmic performance of AGRI LDA AOD, the correlation coefficient (R), mean error (Bias), root mean square error (RMSE), and the percentage of data with errors falling within the expected error envelope of ±(0.05+0.15×AODAERONET) (within EE15) of the LDA AOD dataset are 0.55, 0.328, 0.533, and 34%, respectively. The LDA AOD appears to be overestimated easily in the southern and western regions of China and performs poorly in the offshore areas, with an R of 0.43, a Bias of 0.334, a larger RMSE of 0.597, and a global climate observing system fraction (GCOSF) percentage of 15% compared to the inland areas (R = 0.60, Bias = 0.163, RMSE = 0.509, GCOSF = 17%). Future improvements should focus on surface reflectance calculation, water vapor attenuation, and more suitable aerosol model selection to improve the algorithm's accuracy.
风云四号B星(FY-4B)上搭载的先进静止轨道辐射成像仪(AGRI)传感器能够捕捉大气环境中不同相态的粒子,并以高空间和时间分辨率获取气溶胶观测数据。为了解AGRI陆地气溶胶(LDA)产品的质量及其应用前景,我们对AGRI LDA气溶胶光学厚度(AOD)进行了综合评估。利用近1年(2022年10月1日至2023年9月30日)的550纳米AGRI LDA AOD(550nm)与气溶胶机器人网络(AERONET)、中分辨率成像光谱仪多角度成像大气校正(MODIS MAIAC)以及 Himawari-9/先进 Himawari 成像仪(AHI)的AOD进行比较。结果显示AGRI LDA AOD算法性能不稳定,LDA AOD数据集的相关系数(R)、平均误差(偏差,Bias)、均方根误差(RMSE)以及误差落在±(0.05 + 0.15×AODAERONET)预期误差范围内(在EE15内)的数据百分比分别为0.55、0.328、0.533和34%。LDA AOD在中国南部和西部地区似乎容易被高估,在近海区域表现较差,与内陆地区相比(R = 0.60,Bias = 0.163,RMSE = 0.509,全球气候观测系统分数(GCOSF)百分比 = 17%),其R为0.43,Bias为0.334,RMSE更大,为0.597,GCOSF百分比为15%。未来的改进应集中在地表反射率计算、水汽衰减以及选择更合适的气溶胶模型以提高算法精度。