Suppr超能文献

一种用于RIS辅助毫米波系统的新型两步信道估计方法。

A Novel Two-Step Channel Estimation Method for RIS-Assisted mmWave Systems.

作者信息

Yu Jiarun

机构信息

School of Information and Communications Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.

出版信息

Sensors (Basel). 2024 Aug 19;24(16):5362. doi: 10.3390/s24165362.

Abstract

In this work, we resolve the cascaded channel estimation problem and the reflected channel estimation problem for the reconfigurable intelligent surface (RIS)-assisted millimeter-wave (mmWave) systems. The novel two-step method contains modified multiple population genetic algorithm (MMPGA), least squares (LS), residual network (ResNet), and multi-task regression model. In the first step, the proposed MMPGA-LS optimizes the crossover strategy and mutation strategy. Besides, the ResNet achieves cascaded channel estimation by learning the relationship between the cascaded channel obtained by the MMPGA-LS and the channel of the user (UE)-RIS-base station (BS). Then, the proposed multi-task-ResNet (MTRnet) is introduced for the reflected channel estimation. Relying on the output of ResNet, the MTRnet with multiple output layers estimates the coefficients of reflected channels and reconstructs the channel of UE-RIS and RIS-BS. Remarkably, the proposed MTRnet is capable of using a lower optimization model to estimate multiple reflected channels compared with the classical neural network with the single output layer. A series of experimental results validate the superiority of the proposed method in terms of a lower norm mean square error (NMSE). Besides, the proposed method also obtains a low NMSE in the RIS with the formulation of the uniform planar array.

摘要

在这项工作中,我们解决了可重构智能表面(RIS)辅助毫米波(mmWave)系统的级联信道估计问题和反射信道估计问题。这种新颖的两步法包含改进的多群体遗传算法(MMPGA)、最小二乘法(LS)、残差网络(ResNet)和多任务回归模型。在第一步中,所提出的MMPGA-LS优化了交叉策略和变异策略。此外,ResNet通过学习MMPGA-LS获得的级联信道与用户设备(UE)-RIS-基站(BS)信道之间的关系来实现级联信道估计。然后,引入所提出的多任务ResNet(MTRnet)用于反射信道估计。依靠ResNet的输出,具有多个输出层的MTRnet估计反射信道的系数并重建UE-RIS和RIS-BS的信道。值得注意的是,与具有单输出层的经典神经网络相比,所提出的MTRnet能够使用更低的优化模型来估计多个反射信道。一系列实验结果验证了所提方法在较低范数均方误差(NMSE)方面的优越性。此外,在所提方法应用于均匀平面阵列形式的RIS时,也获得了较低的NMSE。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6940/11359251/2b15ca30280c/sensors-24-05362-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验