Department of Computer Engineering, Sari Branch, Islamic Azad University, Sari, Iran.
Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
Comput Biol Med. 2024 Oct;181:109071. doi: 10.1016/j.compbiomed.2024.109071. Epub 2024 Aug 27.
In high-dimensional gene expression data, selecting an optimal subset of genes is crucial for achieving high classification accuracy and reliable diagnosis of diseases. This paper proposes a two-stage hybrid model for gene selection based on clustering and a swarm intelligence algorithm to identify the most informative genes with high accuracy. First, a clustering-based multivariate filter approach is performed to explore the interactions between the features and eliminate any redundant or irrelevant ones. Then, by controlling for the problem of premature convergence in the binary Bat algorithm, the optimal gene subset is determined using different classifiers with the Monte Carlo cross-validation data partitioning model. The effectiveness of our proposed framework is evaluated using eight gene expression datasets, by comparison with other recently published algorithms in the literature. Experiments confirm that in seven out of eight datasets, the proposed method can achieve superior results in terms of classification accuracy and gene subset size. In particular, it achieves a classification accuracy of 100% in Lymphoma and Ovarian datasets and above 97.4% in the rest with a minimum number of genes. The results demonstrate that our proposed algorithm has the potential to solve the feature selection problem in different applications with high-dimensional datasets.
在高维基因表达数据中,选择最佳的基因子集对于实现高分类准确性和可靠的疾病诊断至关重要。本文提出了一种基于聚类和群体智能算法的两阶段混合模型,用于选择具有高精度的最具信息量的基因。首先,进行基于聚类的多元过滤方法以探索特征之间的相互作用并消除任何冗余或不相关的特征。然后,通过控制二进制蝙蝠算法的过早收敛问题,使用不同的分类器和蒙特卡罗交叉验证数据分区模型来确定最佳基因子集。通过与文献中其他最近发布的算法进行比较,使用八个基因表达数据集评估了我们提出的框架的有效性。实验证实,在八个数据集的七个数据集中,所提出的方法在分类准确性和基因子集大小方面可以取得优越的结果。特别是,它在Lymphoma 和 Ovarian 数据集上实现了 100%的分类准确性,在其余数据集上的分类准确性也高于 97.4%,同时使用的基因数量最少。结果表明,所提出的算法具有在具有高维数据集的不同应用中解决特征选择问题的潜力。