Suppr超能文献

纳米等离子体快速抗微生物耐药性即时检测装置:RAPIDx

Nanoplasmonic Rapid Antimicrobial-Resistance Point-of-Care Identification Device: RAPIDx.

作者信息

Lee Jong-Hwan, Song Jihwan, Hong SoonGweon, Kim Yun, Song Minsun, Cho Byungrae, Wu Tiffany, Riley Lee W, Landegren Ulf, Lee Luke P

机构信息

Department of Bioengineering, University of California Berkeley, Berkeley, CA, 94720, USA.

Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea.

出版信息

Adv Healthc Mater. 2025 Jan;14(1):e2402044. doi: 10.1002/adhm.202402044. Epub 2024 Aug 29.

Abstract

The emergence of antibiotic resistance has become a global health crisis, and everyone must arm themselves with wisdom to effectively combat the "silent tsunami" of infections that are no longer treatable with antibiotics. However, the overuse or inappropriate use of unnecessary antibiotics is still routine for administering them due to the unavailability of rapid, precise, and point-of-care assays. Here, a rapid antimicrobial-resistance point-of-care identification device (RAPIDx) is reported for the accurate and simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype). First, a contamination-free active target enzyme is extracted via the photothermal lysis of preconcentrated bacteria cells on a nanoplasmonic functional layer on-chip. Second, the rapid, precise identification of pathogens is achieved by the photonic rolling circle amplification of DNA on a chip. Third, the simultaneous identification of bacterial species (genotype) and target enzyme activity (phenotype) is demonstrated within a sample-to-answer 45 min operation via the RAPIDx. It is believed that the RAPIDx will be a valuable method for solving the bottleneck of employing on-chip nanotechnology for antibiotic-resistant bioassay and other infectious diseases.

摘要

抗生素耐药性的出现已成为一场全球健康危机,每个人都必须用智慧武装自己,以有效应对不再能用抗生素治疗的感染这一“无声海啸”。然而,由于缺乏快速、精确的即时检测方法,过度使用或不当使用不必要的抗生素在给药时仍是常规操作。在此,报道了一种快速抗菌耐药即时识别装置(RAPIDx),用于准确、同时识别细菌种类(基因型)和目标酶活性(表型)。首先,通过对芯片上纳米等离子体功能层上预浓缩细菌细胞进行光热裂解,提取无污染物的活性目标酶。其次,通过芯片上DNA的光子滚环扩增实现病原体的快速、精确识别。第三,通过RAPIDx在45分钟的样本到答案操作内实现了细菌种类(基因型)和目标酶活性(表型)的同时识别。相信RAPIDx将成为解决将芯片上纳米技术用于抗生素耐药生物检测和其他传染病的瓶颈的一种有价值的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验