Suppr超能文献

评估华盛顿州数字化 COVID-19 接触者通知系统在一个大流行年度内的有效性。

Evaluation of the effectiveness of Washington State's digital COVID-19 exposure notification system over one pandemic year.

机构信息

Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States.

The Mountain-Whisper-Light: Statistics & Data Science, Seattle, WA, United States.

出版信息

Front Public Health. 2024 Aug 14;12:1408178. doi: 10.3389/fpubh.2024.1408178. eCollection 2024.

Abstract

INTRODUCTION

Digital exposure notifications are a novel public health intervention used during the COVID-19 pandemic to alert users of possible COVID-19 exposure. We seek to quantify the effectiveness of Washington State's digital exposure notification system, WA Notify, as measured by the number of COVID-19 cases averted during a 1-year period.

METHODS

While maintaining individuals' privacy, WA Notify collected data that could be used to evaluate the system's effectiveness. This article uses these and other data and builds on a previous model to estimate the number of cases averted by WA Notify. Novel estimates of some model parameters are possible because of improvements in the quality and breadth of data reported by WA Notify.

RESULTS

We estimate that WA Notify averted 64,000 (sensitivity analysis: 35,000-92,000) COVID-19 cases in Washington State during the study period from 1 March 2021 to 28 February 2022. During this period, there were an estimated 1,089,000 exposure notifications generated and 155,000 cases reported to WA Notify. During the last 78 days of the study period, the median estimated number of daily active users was 1,740,000.

DISCUSSION

We believe WA Notify reduced the impact of the COVID-19 pandemic in Washington State and that similar systems could reduce the impact of future communicable disease outbreaks.

摘要

简介

数字接触者通知是一种新型的公共卫生干预措施,在 COVID-19 大流行期间用于提醒用户可能接触过 COVID-19。我们旨在量化华盛顿州数字接触者通知系统 WA Notify 在一年期间避免 COVID-19 病例的效果。

方法

在维护个人隐私的同时,WA Notify 收集了可用于评估系统效果的数据。本文使用了这些数据和其他数据,并在之前的模型基础上进行了扩展,以估计 WA Notify 避免的病例数。由于 WA Notify 报告的数据质量和广度有所提高,因此某些模型参数的新估计值成为可能。

结果

我们估计,在 2021 年 3 月 1 日至 2022 年 2 月 28 日的研究期间,WA Notify 在华盛顿州避免了 64000 例(敏感性分析:35000-92000)COVID-19 病例。在此期间,估计产生了 108.9 万次接触通知,向 WA Notify 报告了 15.5 万例病例。在研究期间的最后 78 天,估计每日活跃用户的中位数为 174 万。

讨论

我们认为 WA Notify 减轻了 COVID-19 在华盛顿州的影响,并且类似的系统可以减轻未来传染病爆发的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/154c/11349652/bd41217e25ab/fpubh-12-1408178-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验