Suppr超能文献

通过集成机器学习方法预测非化疗药物引起的粒细胞缺乏症毒性

Predicting non-chemotherapy drug-induced agranulocytosis toxicity through ensemble machine learning approaches.

作者信息

Huang Xiaojie, Xie Xiaochun, Huang Shaokai, Wu Shanshan, Huang Lina

机构信息

Department of Clinical Pharmacy, Jieyang People's Hospital, Jieyang, China.

出版信息

Front Pharmacol. 2024 Aug 14;15:1431941. doi: 10.3389/fphar.2024.1431941. eCollection 2024.

Abstract

Agranulocytosis, induced by non-chemotherapy drugs, is a serious medical condition that presents a formidable challenge in predictive toxicology due to its idiosyncratic nature and complex mechanisms. In this study, we assembled a dataset of 759 compounds and applied a rigorous feature selection process prior to employing ensemble machine learning classifiers to forecast non-chemotherapy drug-induced agranulocytosis (NCDIA) toxicity. The balanced bagging classifier combined with a gradient boosting decision tree (BBC + GBDT), utilizing the combined descriptor set of DS and RDKit comprising 237 features, emerged as the top-performing model, with an external validation AUC of 0.9164, ACC of 83.55%, and MCC of 0.6095. The model's predictive reliability was further substantiated by an applicability domain analysis. Feature importance, assessed through permutation importance within the BBC + GBDT model, highlighted key molecular properties that significantly influence NCDIA toxicity. Additionally, 16 structural alerts identified by SARpy software further revealed potential molecular signatures associated with toxicity, enriching our understanding of the underlying mechanisms. We also applied the constructed models to assess the NCDIA toxicity of novel drugs approved by FDA. This study advances predictive toxicology by providing a framework to assess and mitigate agranulocytosis risks, ensuring the safety of pharmaceutical development and facilitating post-market surveillance of new drugs.

摘要

由非化疗药物引起的粒细胞缺乏症是一种严重的医学病症,由于其特异质性和复杂机制,在预测毒理学中构成了巨大挑战。在本研究中,我们收集了一个包含759种化合物的数据集,并在采用集成机器学习分类器预测非化疗药物引起的粒细胞缺乏症(NCDIA)毒性之前,应用了严格的特征选择过程。结合了梯度提升决策树的平衡装袋分类器(BBC + GBDT),利用包含237个特征的DS和RDKit组合描述符集,成为表现最佳的模型,外部验证AUC为0.9164,ACC为83.55%,MCC为0.6095。适用性域分析进一步证实了该模型的预测可靠性。通过BBC + GBDT模型内的排列重要性评估的特征重要性,揭示了显著影响NCDIA毒性的关键分子特性。此外,SARpy软件识别出的16个结构警报进一步揭示了与毒性相关的潜在分子特征,丰富了我们对潜在机制的理解。我们还应用构建的模型评估了FDA批准的新药的NCDIA毒性。本研究通过提供一个评估和减轻粒细胞缺乏症风险的框架,推动了预测毒理学的发展,确保了药物研发的安全性,并促进了新药的上市后监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9fc/11349714/75228965dcdb/fphar-15-1431941-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验