Suppr超能文献

慢性乙型肝炎病毒感染患者开始长期抗病毒治疗前发生肝细胞癌的风险预测模型。

Risk predictive model for the development of hepatocellular carcinoma before initiating long-term antiviral therapy in patients with chronic hepatitis B virus infection.

机构信息

Department of Infectious Diseases, Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

J Med Virol. 2024 Sep;96(9):e29884. doi: 10.1002/jmv.29884.

Abstract

It is generally acknowledged that antiviral therapy can reduce the incidence of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), there remains a subset of patients with chronic HBV infection who develop HCC despite receiving antiviral treatment. This study aimed to develop a model capable of predicting the long-term occurrence of HCC in patients with chronic HBV infection before initiating antiviral therapy. A total of 1450 patients with chronic HBV infection, who received initial antiviral therapy between April 2006 and March 2023 and completed long-term follow-ups, were nonselectively enrolled in this study. Least absolute shrinkage and selection operator (LASSO) and Cox regression analysis was used to construct the model. The results were validated in an external cohort (n = 210) and compared with existing models. The median follow-up time for all patients was 60 months, with a maximum follow-up time of 144 months, during which, 32 cases of HCC occurred. The nomogram model for predicting HCC based on GGT, AFP, cirrhosis, gender, age, and hepatitis B e antibody (TARGET-HCC) was constructed, demonstrating a good predictive performance. In the derivation cohort, the C-index was 0.906 (95% CI = 0.869-0.944), and in the validation cohort, it was 0.780 (95% CI = 0.673-0.886). Compared with existing models, TARGET-HCC showed promising predictive performance. Additionally, the time-dependent feature importance curve indicated that gender consistently remained the most stable predictor for HCC throughout the initial decade of antiviral therapy. This simple predictive model based on noninvasive clinical features can assist clinicians in identifying high-risk patients with chronic HBV infection for HCC before the initiation of antiviral therapy.

摘要

人们普遍认为抗病毒治疗可以降低乙型肝炎病毒(HBV)相关肝细胞癌(HCC)的发生率,但仍有一部分慢性 HBV 感染患者在接受抗病毒治疗后仍会发生 HCC。本研究旨在建立一种能够在开始抗病毒治疗前预测慢性 HBV 感染患者 HCC 长期发生的模型。

本研究共纳入 1450 例于 2006 年 4 月至 2023 年 3 月期间接受初始抗病毒治疗且完成长期随访的慢性 HBV 感染患者,采用最小绝对收缩和选择算子(LASSO)和 Cox 回归分析构建模型。结果在外部队列(n=210)中进行验证,并与现有模型进行比较。所有患者的中位随访时间为 60 个月,最长随访时间为 144 个月,在此期间,32 例发生 HCC。基于 GGT、AFP、肝硬化、性别、年龄和乙型肝炎 e 抗体(TARGET-HCC)构建了用于预测 HCC 的列线图模型,该模型具有良好的预测性能。在推导队列中,C 指数为 0.906(95%CI=0.869-0.944),在验证队列中为 0.780(95%CI=0.673-0.886)。与现有模型相比,TARGET-HCC 显示出有前景的预测性能。此外,时间依赖性特征重要性曲线表明,在抗病毒治疗的最初十年中,性别一直是 HCC 最稳定的预测因素。

该基于非侵入性临床特征的简单预测模型可帮助临床医生在开始抗病毒治疗前识别出慢性 HBV 感染患者的 HCC 高危患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验