Suppr超能文献

DrugFormer:基于图增强的语言模型预测药物敏感性。

DrugFormer: Graph-Enhanced Language Model to Predict Drug Sensitivity.

机构信息

Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.

Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, 32611, USA.

出版信息

Adv Sci (Weinh). 2024 Oct;11(40):e2405861. doi: 10.1002/advs.202405861. Epub 2024 Aug 29.

Abstract

Drug resistance poses a crucial challenge in healthcare, with response rates to chemotherapy and targeted therapy remaining low. Individual patient's resistance is exacerbated by the intricate heterogeneity of tumor cells, presenting significant obstacles to effective treatment. To address this challenge, DrugFormer, a novel graph-augmented large language model designed to predict drug resistance at single-cell level is proposed. DrugFormer integrates both serialized gene tokens and gene-based knowledge graphs for the accurate predictions of drug response. After training on comprehensive single-cell data with drug response information, DrugFormer model presents outperformance, with higher F1, precision, and recall in predicting drug response. Based on the scRNA-seq data from refractory multiple myeloma (MM) and acute myeloid leukemia (AML) patients, DrugFormer demonstrates high efficacy in identifying resistant cells and uncovering underlying molecular mechanisms. Through pseudotime trajectory analysisunique drug-resistant cellular states associated with poor patient outcomes are revealed. Furthermore, DrugFormer identifies potential therapeutic targets, such as COX8A, for overcoming drug resistance across different cancer types. In conclusion, DrugFormer represents a significant advancement in the field of drug resistance prediction, offering a powerful tool for unraveling the heterogeneity of cellular response to drugs and guiding personalized treatment strategies.

摘要

耐药性是医疗保健领域面临的一个关键挑战,化疗和靶向治疗的反应率仍然很低。由于肿瘤细胞的复杂异质性,个体患者的耐药性加剧,这对有效治疗构成了重大障碍。为了应对这一挑战,我们提出了一种新的基于图增强的大型语言模型 DrugFormer,用于预测单细胞水平的药物耐药性。DrugFormer 集成了序列化基因标记和基于基因的知识图谱,用于准确预测药物反应。在具有药物反应信息的综合单细胞数据上进行训练后,DrugFormer 模型表现出色,在预测药物反应方面具有更高的 F1、精度和召回率。基于难治性多发性骨髓瘤 (MM) 和急性髓系白血病 (AML) 患者的 scRNA-seq 数据,DrugFormer 证明了在识别耐药细胞和揭示潜在分子机制方面的高效性。通过伪时间轨迹分析,揭示了与患者预后不良相关的独特耐药细胞状态。此外,DrugFormer 确定了潜在的治疗靶点,如 COX8A,可克服不同癌症类型的药物耐药性。总之,DrugFormer 代表了耐药性预测领域的重大进展,为揭示细胞对药物反应的异质性并指导个性化治疗策略提供了强大的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d65/11516065/fd879294163a/ADVS-11-2405861-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验