Suppr超能文献

scATD:一种用于单细胞癌症耐药性预测和生物标志物识别的高通量且可解释的框架。

scATD: a high-throughput and interpretable framework for single-cell cancer drug resistance prediction and biomarker identification.

作者信息

Zhou Murong, Luo Zeyu, Yin Yu-Hang, Liu Qiaoming, Wang Guohua, Zhao Yuming

机构信息

College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China.

College of Life Science, Northeast Forestry University, Harbin 150040, China.

出版信息

Brief Bioinform. 2025 May 1;26(3). doi: 10.1093/bib/bbaf268.

Abstract

Transfer learning has been widely applied to drug sensitivity prediction based on single-cell RNA sequencing, leveraging knowledge from large datasets of cancer cell lines or other sources to improve the prediction of drug responses. However, previous studies require model fine-tuning for different patient single-cell datasets, limiting their ability to meet the clinical need for high-throughput rapid prediction. In this research, we introduce single-cell Adaptive Transfer and Distillation model (scATD), a transfer learning framework leveraging large language models for high-throughput drug sensitivity prediction. Based on different large language models (scFoundation and Geneformer) and transfer strategies, scATD includes three distinct sub-models: scATD-sf, scATD-gf, and scATD-sf-dist. scATD-sf and scATD-gf employs an important bidirectional style transfer to enable predictions for new patients without model parameter training. Additionally, scATD-sf-dist uses knowledge distillation from large models to enhance prediction performance, improve efficiency, and reduce resource requirements. Benchmarking across more diverse datasets demonstrates scATD's superior accuracy, generalization and efficiency. Besides, by rigorously selecting reference background samples for feature attribution algorithms, scATD also provides more meaningful insights into the relationship between gene expression and drug resistance mechanisms. Making scATD more interpretability for addressing critical challenges in precision oncology.

摘要

迁移学习已被广泛应用于基于单细胞RNA测序的药物敏感性预测,利用来自癌细胞系或其他来源的大型数据集的知识来改进药物反应的预测。然而,先前的研究需要针对不同患者的单细胞数据集进行模型微调,限制了它们满足高通量快速预测临床需求的能力。在本研究中,我们引入了单细胞自适应迁移与蒸馏模型(scATD),这是一种利用大语言模型进行高通量药物敏感性预测的迁移学习框架。基于不同的大语言模型(scFoundation和Geneformer)和迁移策略,scATD包括三个不同的子模型:scATD-sf、scATD-gf和scATD-sf-dist。scATD-sf和scATD-gf采用重要的双向风格迁移,无需模型参数训练就能对新患者进行预测。此外,scATD-sf-dist利用大模型的知识蒸馏来提高预测性能、提升效率并降低资源需求。在更多样化的数据集上进行基准测试证明了scATD具有卓越的准确性、泛化能力和效率。此外,通过为特征归因算法严格选择参考背景样本,scATD还为基因表达与耐药机制之间的关系提供了更有意义的见解。使scATD在解决精准肿瘤学中的关键挑战方面更具可解释性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验