Suppr超能文献

颅内动脉瘤氧化应激相关特征标志物的鉴定与验证——应用生物信息学。

Identification and Verification of the Oxidative Stress-Related Signature Markers for Intracranial Aneurysm-Applied Bioinformatics.

机构信息

Major of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, 050013 Shijiazhuang, Hebei, China.

Major of Integrated Traditional Chinese and Western Medicine, First Affiliated Hospital of Hebei University of Chinese Medicine, 050013 Shijiazhuang, Hebei, China.

出版信息

Front Biosci (Landmark Ed). 2024 Aug 20;29(8):294. doi: 10.31083/j.fbl2908294.

Abstract

BACKGROUND

Intracranial aneurysm (IA) is a localized abnormal dilation of the cerebral vascular wall, the degeneration of which is closely related to high oxidative stress.

METHODS

Clinical information and RNA-seq data from five public datasets were downloaded from the Gene Expression Omnibus (GEO). Using the "GSVA" package, enrichment analysis was performed on the gene sets of the oxidative stress, reactive oxygen species (ROS), metabolism, and inflammatory pathways retrieved from the MsigDB and Kyoto encyclopedia of genes and genomes (KEGG) databases. Weighted gene co-expression network analysis (WGCNA) was conducted using the "WGCNA" package, followed by using the "limma" R package to select differentially expressed genes (DEGs). Key genes were determined by applying three machine learning algorithms (random forest, Lasso, and SVM-RFE). The expression levels of the key genes were verified by the quantitative real-time polymerase chain reaction (qRT-PCR) in IA. Finally, ESTIMATE and CIBERPSORT algorithms were used for immune infiltration analysis.

RESULTS

The enrichment score of the oxidative stress, ROS, metabolism, and inflammatory pathways was calculated, and we found that these pathways were significantly activated in IA samples with higher immune infiltration. The intersection between the blue module related to oxidative stress (610 genes identified by WGCNA) and 380 upregulated DEGs contained a total of 209 key genes, which were further processed by machine learning algorithms to obtain four crucial diagnostic markers (FLVCR2, SDSL, TBC1D2, and SLC31A1) for IA. These key genes are highly expressed in human brain vascular smooth muscle cells. The expressions of the four markers were significantly positively correlated with the abnormal activation phenotypes of oxidative stress, the ROS and glucometabolic pathways, and suppressive immune infiltration.

CONCLUSION

This study employed WGCNA combined with three machine learning algorithms to identify four oxidative stress-related signature markers for IA, providing novel insights into the clinical management of IA patients.

摘要

背景

颅内动脉瘤(IA)是脑血管壁的局部异常扩张,其退化与高氧化应激密切相关。

方法

从基因表达综合数据库(GEO)下载了五个公共数据集的临床信息和 RNA-seq 数据。使用“GSVA”软件包,对从 MsigDB 和京都基因与基因组百科全书(KEGG)数据库检索到的氧化应激、活性氧(ROS)、代谢和炎症途径的基因集进行了富集分析。使用“WGCNA”软件包进行加权基因共表达网络分析(WGCNA),然后使用“limma”R 包选择差异表达基因(DEGs)。应用三种机器学习算法(随机森林、Lasso 和 SVM-RFE)确定关键基因。通过定量实时聚合酶链反应(qRT-PCR)验证 IA 中关键基因的表达水平。最后,使用 ESTIMATE 和 CIBERSPOT 算法进行免疫浸润分析。

结果

计算了氧化应激、ROS、代谢和炎症途径的富集评分,发现这些途径在免疫浸润较高的 IA 样本中显著激活。WGCNA 鉴定的与氧化应激相关的蓝色模块(610 个基因)与 380 个上调的 DEGs 之间的交集共包含 209 个关键基因,进一步通过机器学习算法处理得到 IA 的四个关键诊断标志物(FLVCR2、SDSL、TBC1D2 和 SLC31A1)。这些关键基因在人脑血管平滑肌细胞中高表达。四个标志物的表达与氧化应激、ROS 和糖代谢途径的异常激活表型以及抑制性免疫浸润呈显著正相关。

结论

本研究采用 WGCNA 结合三种机器学习算法,鉴定出与 IA 相关的四个氧化应激相关的特征性标志物,为 IA 患者的临床管理提供了新的思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验