文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用人工智能算法分析系统性硬化症-间质性肺病的影像学特征。

Use of artificial intelligence algorithms to analyse systemic sclerosis-interstitial lung disease imaging features.

机构信息

Department of Rheumatology, People's Hospital of Xiangxi Tujia and Miao Autonomous Prefecture (The First Affiliated Hospital of Jishou University), Intersection of Shiji Avenue and Jianxin Road, Jishou, 416000, Hunan, People's Republic of China.

Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, People's Republic of China.

出版信息

Rheumatol Int. 2024 Oct;44(10):2027-2041. doi: 10.1007/s00296-024-05681-7. Epub 2024 Aug 29.


DOI:10.1007/s00296-024-05681-7
PMID:39207588
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11393027/
Abstract

The use of artificial intelligence (AI) in high-resolution computed tomography (HRCT) for diagnosing systemic sclerosis-associated interstitial lung disease (SSc-ILD) is relatively limited. This study aimed to analyse lung HRCT images of patients with systemic sclerosis with interstitial lung disease (SSc-ILD) using artificial intelligence (AI), conduct correlation analysis with clinical manifestations and prognosis, and explore the features and prognosis of SSc-ILD. Overall, 72 lung HRCT images and clinical data of 58 patients with SSC-ILD were collected. ILD lesion type, location, and volume on HRCT images were identified and evaluated using AI. The imaging characteristics of diffuse SSC (dSSc)-ILD and limited SSc-ILD (lSSc-ILD) were statistically analysed. Furthermore, the correlations between lesion type, clinical indicators, and prognosis were investigated. dSSc and lSSc were more prevalent in patients with a disease duration of < 1 and ≥ 5 years, respectively. SSc-ILD mainly comprises non-specific interstitial pneumonia (NSIP), usual interstitial pneumonia (UIP), and unclassifiable idiopathic interstitial pneumonia. HRCT reveals various lesion types in the early stages of the disease, with an increase in the number of lesion types as the disease progresses. Lesions appearing as grid, ground-glass, and nodular shadows were dispersed throughout both lungs, while those appearing as consolidation shadows and honeycomb were distributed across the lungs. Ground-glass opacity lesion type was absent on HRCT images of patients with SSc-ILD and pulmonary hypertension. This study showed that AI can efficiently analyse imaging characteristics of SSc-ILD, demonstrating its potential to learn from complex images with high generalisation ability.

摘要

人工智能(AI)在高分辨率计算机断层扫描(HRCT)诊断系统性硬化症相关间质性肺病(SSc-ILD)中的应用相对有限。本研究旨在使用人工智能(AI)分析系统性硬化症伴间质性肺病(SSc-ILD)患者的肺部 HRCT 图像,与临床表现和预后进行相关性分析,并探讨 SSc-ILD 的特征和预后。总体而言,共收集了 58 例 SSc-ILD 患者的 72 张肺部 HRCT 图像和临床资料。使用 AI 识别和评估 HRCT 图像上的ILD 病变类型、位置和体积。对弥漫性 SSc(dSSc)-ILD 和局限性 SSc-ILD(lSSc-ILD)的影像学特征进行了统计学分析。此外,还研究了病变类型、临床指标与预后之间的相关性。dSSc 和 lSSc 在疾病持续时间<1 年和≥5 年的患者中更为常见。SSc-ILD 主要包括非特异性间质性肺炎(NSIP)、寻常型间质性肺炎(UIP)和无法分类的特发性间质性肺炎。HRCT 在疾病早期显示出各种病变类型,随着疾病的进展,病变类型的数量增加。网格状、磨玻璃状和结节状阴影的病变分散在双肺,而实变阴影和蜂窝状阴影的病变分布在肺部。在 SSc-ILD 患者的 HRCT 图像上没有玻璃状混浊病变类型,且没有肺动脉高压。本研究表明,AI 可以有效地分析 SSc-ILD 的影像学特征,具有从具有高度泛化能力的复杂图像中学习的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/4e4ccab6885c/296_2024_5681_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/db782e49db5f/296_2024_5681_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/442efe6c5cf2/296_2024_5681_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/9546616d0f31/296_2024_5681_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/4e4ccab6885c/296_2024_5681_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/db782e49db5f/296_2024_5681_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/442efe6c5cf2/296_2024_5681_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/9546616d0f31/296_2024_5681_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b823/11393027/4e4ccab6885c/296_2024_5681_Fig4_HTML.jpg

相似文献

[1]
Use of artificial intelligence algorithms to analyse systemic sclerosis-interstitial lung disease imaging features.

Rheumatol Int. 2024-10

[2]
Artificial intelligence-based quantification of pulmonary HRCT (AIqpHRCT) for the evaluation of interstitial lung disease in patients with inflammatory rheumatic diseases.

Rheumatol Int. 2024-11

[3]
Imaging Features of Systemic Sclerosis-Associated Interstitial Lung Disease.

J Vis Exp. 2020-6-16

[4]
KL6 and IL-18 levels are negatively correlated with respiratory function tests and ILD extent assessed on HRCT in patients with systemic sclerosis-related interstitial lung disease (SSc-ILD).

Semin Arthritis Rheum. 2024-4

[5]
Clinical algorithms for the diagnosis and prognosis of interstitial lung disease in systemic sclerosis.

Semin Arthritis Rheum. 2017-4-1

[6]
The potential utility of anterior upper lobe honeycomb-like lesion in interstitial lung disease associated with connective tissue disease.

Respir Med. 2020-10

[7]
Worsening of esophageal dilatation is associated with increase in a high-resolution computed tomography (HRCT) score in early systemic sclerosis-associated interstitial lung disease (SSc-ILD).

Clin Rheumatol. 2021-3

[8]
Brief Report: Pulmonary Function Tests: High Rate of False-Negative Results in the Early Detection and Screening of Scleroderma-Related Interstitial Lung Disease.

Arthritis Rheumatol. 2015-12

[9]
Evolution of high-resolution CT-scan in systemic sclerosis-associated interstitial lung disease: Description and prognosis factors.

Semin Arthritis Rheum. 2020-12

[10]
Emphysematous change with scleroderma-associated interstitial lung disease: the potential contribution of vasculopathy?

BMC Pulm Med. 2018-1-30

引用本文的文献

[1]
The association of symptoms, pulmonary function test and computed tomography in interstitial lung disease at the onset of connective tissue disease: an observational study with artificial intelligence analysis of high-resolution computed tomography.

Rheumatol Int. 2025-8-12

[2]
Artificial Intelligence in Peer Review: Enhancing Efficiency While Preserving Integrity.

J Korean Med Sci. 2025-2-24

本文引用的文献

[1]
Concordance and Prognostic Relevance of Different Definitions of Systemic Sclerosis Interstitial Lung Disease Progression.

Am J Respir Crit Care Med. 2024-12-1

[2]
Usefulness of CT Quantification-Based Assessment in Defining Progressive Pulmonary Fibrosis.

Acad Radiol. 2024-11

[3]
Sample Size Considerations for Fine-Tuning Large Language Models for Named Entity Recognition Tasks: Methodological Study.

JMIR AI. 2024-5-16

[4]
Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging.

Nat Med. 2024-5

[5]
Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review.

Lancet Digit Health. 2024-5

[6]
Interstitial Lung Disease: A Review.

JAMA. 2024-5-21

[7]
Radiomics and Deep Learning to Predict Pulmonary Nodule Metastasis at CT.

Radiology. 2024-4

[8]
Improving Prognostication in Pulmonary Hypertension Using AI-quantified Fibrosis and Radiologic Severity Scoring at Baseline CT.

Radiology. 2024-2

[9]
Artificial intelligence for segmentation and classification of lobar, lobular, and interstitial pneumonia using case-specific CT information.

Quant Imaging Med Surg. 2024-1-3

[10]
Early detection of interstitial lung disease in rheumatic diseases: A joint statement from the Portuguese Pulmonology Society, the Portuguese Rheumatology Society, and the Portuguese Radiology and Nuclear Medicine Society.

Pulmonology. 2025-12-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索