Suppr超能文献

p53 调控癌症代谢:揭示逆转瓦博格效应的策略。

p53 Orchestrates Cancer Metabolism: Unveiling Strategies to Reverse the Warburg Effect.

机构信息

Mathematics Department, King Abdulaziz University, Rabigh, Saudi Arabia.

School of Mathematics, University of Birmingham, Birmingham, B15 2TS, UK.

出版信息

Bull Math Biol. 2024 Aug 29;86(10):124. doi: 10.1007/s11538-024-01346-5.

Abstract

Cancer cells exhibit significant alterations in their metabolism, characterised by a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on glycolysis, even in the presence of oxygen. This metabolic shift, known as the Warburg effect, is pivotal in fuelling cancer's uncontrolled growth, invasion, and therapeutic resistance. While dysregulation of many genes contributes to this metabolic shift, the tumour suppressor gene p53 emerges as a master player. Yet, the molecular mechanisms remain elusive. This study introduces a comprehensive mathematical model, integrating essential p53 targets, offering insights into how p53 orchestrates its targets to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation outcomes align closely with experimental data comparing glucose metabolism in colon cancer cells with wild-type and mutated p53. Additionally, our findings reveal the dynamic capability of elevated p53 activation to fully reverse the Warburg effect, highlighting the significance of its activity levels not just in triggering apoptosis (programmed cell death) post-chemotherapy but also in modifying the metabolic pathways implicated in treatment resistance. In scenarios of p53 mutations, our analysis suggests targeting glycolysis-instigating signalling pathways as an alternative strategy, whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mitochondrial respiration but may not effectively suppress the glycolysis pathway, potentially boosting the energy production and cancer cell viability.

摘要

癌细胞的代谢发生了显著改变,其特征是氧化磷酸化(OXPHOS)减少,糖酵解增加,即使在有氧气的情况下也是如此。这种代谢转变被称为瓦博格效应(Warburg effect),是促进癌症失控生长、侵袭和治疗抵抗的关键。虽然许多基因的失调导致了这种代谢转变,但肿瘤抑制基因 p53 成为了主要的参与者。然而,其分子机制仍不清楚。本研究引入了一个综合的数学模型,整合了关键的 p53 靶点,深入了解了 p53 如何协调其靶点,将癌症代谢重定向到 OXPHOS 主导的状态。模拟结果与比较野生型和突变型 p53 的结肠癌细胞葡萄糖代谢的实验数据非常吻合。此外,我们的研究结果揭示了高 p53 激活的动态能力可以完全逆转瓦博格效应,强调了其活性水平的重要性,不仅在于化疗后触发细胞凋亡(程序性细胞死亡),还在于改变与治疗抵抗相关的代谢途径。在 p53 突变的情况下,我们的分析表明,靶向糖酵解诱导的信号通路是一种替代策略,而仅靶向细胞色素 c 氧化酶 2(SCO2)的合成并不能有效地抑制糖酵解途径,可能会增加能量产生和癌细胞的活力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbae/11362376/d9feab1613b5/11538_2024_1346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验