Suppr超能文献

NF-κB 通过上调线粒体呼吸来控制能量平衡和代谢适应。

NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.

机构信息

Section of Inflammation and Signal Transduction, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.

出版信息

Nat Cell Biol. 2011 Aug 28;13(10):1272-9. doi: 10.1038/ncb2324.

Abstract

Cell proliferation is a metabolically demanding process. It requires active reprogramming of cellular bioenergetic pathways towards glucose metabolism to support anabolic growth. NF-κB/Rel transcription factors coordinate many of the signals that drive proliferation during immunity, inflammation and oncogenesis, but whether NF-κB regulates the metabolic reprogramming required for cell division during these processes is unknown. Here, we report that NF-κB organizes energy metabolism networks by controlling the balance between the utilization of glycolysis and mitochondrial respiration. NF-κB inhibition causes cellular reprogramming to aerobic glycolysis under basal conditions and induces necrosis on glucose starvation. The metabolic reorganization that results from NF-κB inhibition overcomes the requirement for tumour suppressor mutation in oncogenic transformation and impairs metabolic adaptation in cancer in vivo. This NF-κB-dependent metabolic pathway involves stimulation of oxidative phosphorylation through upregulation of mitochondrial synthesis of cytochrome c oxidase 2 (SCO2; ref. ). Our findings identify NF-κB as a physiological regulator of mitochondrial respiration and establish a role for NF-κB in metabolic adaptation in normal cells and cancer.

摘要

细胞增殖是一个代谢需求很高的过程。它需要对细胞生物能途径进行积极的重新编程,以转向葡萄糖代谢,从而支持合成代谢生长。NF-κB/Rel 转录因子协调了许多在免疫、炎症和肿瘤发生过程中驱动增殖的信号,但 NF-κB 是否调节这些过程中细胞分裂所需的代谢重编程尚不清楚。在这里,我们报告 NF-κB 通过控制糖酵解和线粒体呼吸的利用平衡来组织能量代谢网络。NF-κB 抑制会导致基础条件下细胞向有氧糖酵解的重新编程,并在葡萄糖饥饿时诱导坏死。NF-κB 抑制导致的代谢重排克服了致癌转化中肿瘤抑制基因突变的要求,并损害了体内癌症的代谢适应。这种 NF-κB 依赖性代谢途径涉及通过上调细胞色素 c 氧化酶 2(SCO2;参考文献)的线粒体合成来刺激氧化磷酸化。我们的发现确定 NF-κB 是线粒体呼吸的生理调节剂,并确立了 NF-κB 在正常细胞和癌症中的代谢适应中的作用。

相似文献

2
p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation.
Nat Cell Biol. 2008 May;10(5):611-8. doi: 10.1038/ncb1724. Epub 2008 Apr 6.
4
KRAB-type zinc-finger proteins PITA and PISA specifically regulate p53-dependent glycolysis and mitochondrial respiration.
Cell Res. 2018 May;28(5):572-592. doi: 10.1038/s41422-018-0008-8. Epub 2018 Feb 21.
5
Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor.
Oncotarget. 2011 Dec;2(12):948-57. doi: 10.18632/oncotarget.389.
6
p53-dependent regulation of mitochondrial energy production by the RelA subunit of NF-κB.
Cancer Res. 2011 Aug 15;71(16):5588-97. doi: 10.1158/0008-5472.CAN-10-4252. Epub 2011 Jul 8.
7
p53 regulates mitochondrial respiration.
Science. 2006 Jun 16;312(5780):1650-3. doi: 10.1126/science.1126863. Epub 2006 May 25.

引用本文的文献

3
NF-κB and apoptosis: colorectal cancer progression and novel strategies for treatment.
Eur J Med Res. 2025 Jul 14;30(1):616. doi: 10.1186/s40001-025-02734-w.
4
Metabolic hallmarks of trastuzumab resistance.
Expert Opin Ther Targets. 2025 Jul;29(7):457-479. doi: 10.1080/14728222.2025.2532394. Epub 2025 Jul 16.
5
NF-κB in inflammation and cancer.
Cell Mol Immunol. 2025 Jun 25. doi: 10.1038/s41423-025-01310-w.
6
NF-κB-mediated developmental delay extends lifespan in .
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2420811122. doi: 10.1073/pnas.2420811122. Epub 2025 May 8.
7
L2S2: chemical perturbation and CRISPR KO LINCS L1000 signature search engine.
Nucleic Acids Res. 2025 Jul 7;53(W1):W338-W350. doi: 10.1093/nar/gkaf373.
8
Organelle symphony: Nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B in stroke pathobiology.
Neural Regen Res. 2026 Apr 1;21(4):1483-1496. doi: 10.4103/NRR.NRR-D-24-01404. Epub 2025 Mar 25.
10
Significance of Malic Enzyme 1 in Cancer: A Review.
Curr Issues Mol Biol. 2025 Jan 29;47(2):83. doi: 10.3390/cimb47020083.

本文引用的文献

1
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis.
Genes Dev. 2011 Mar 1;25(5):460-70. doi: 10.1101/gad.2016311. Epub 2011 Feb 11.
2
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity.
Proc Natl Acad Sci U S A. 2010 May 11;107(19):8788-93. doi: 10.1073/pnas.1003428107. Epub 2010 Apr 26.
3
Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis.
Cancer Res. 2010 May 1;70(9):3537-46. doi: 10.1158/0008-5472.CAN-09-4290. Epub 2010 Apr 20.
4
Alternative fuel--another role for p53 in the regulation of metabolism.
Proc Natl Acad Sci U S A. 2010 Apr 20;107(16):7117-8. doi: 10.1073/pnas.1002656107. Epub 2010 Apr 14.
6
Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad.
Antioxid Redox Signal. 2010 Nov 1;13(9):1403-16. doi: 10.1089/ars.2010.3116.
7
GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress.
Mol Cell. 2009 Nov 13;36(3):379-92. doi: 10.1016/j.molcel.2009.09.031.
8
An oestrogen-receptor-alpha-bound human chromatin interactome.
Nature. 2009 Nov 5;462(7269):58-64. doi: 10.1038/nature08497.
9
Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma.
Nature. 2009 Nov 5;462(7269):104-7. doi: 10.1038/nature08462. Epub 2009 Oct 21.
10
Cancer's insatiable appetite.
Nat Biotechnol. 2009 Oct;27(10):916-7. doi: 10.1038/nbt1009-916.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验