Suppr超能文献

生成式人工智能和大语言模型在初级保健医学教育中的应用。

Generative Artificial Intelligence and Large Language Models in Primary Care Medical Education.

机构信息

Department of Family Medicine and Community Health, University of Kansas Medical Center, Kansas City, KS.

出版信息

Fam Med. 2024 Oct;56(9):534-540. doi: 10.22454/FamMed.2024.775525. Epub 2024 Aug 8.

Abstract

Generative artificial intelligence and large language models are the continuation of a technological revolution in information processing that began with the invention of the transistor in 1947. These technologies, driven by transformer architectures for artificial neural networks, are poised to broadly influence society. It is already apparent that these technologies will be adapted to drive innovation in education. Medical education is a high-risk activity: Information that is incorrectly taught to a student may go unrecognized for years until a relevant clinical situation appears in which that error can lead to patient harm. In this article, I discuss the principal limitations to the use of generative artificial intelligence in medical education-hallucination, bias, cost, and security-and suggest some approaches to confronting these problems. Additionally, I identify the potential applications of generative artificial intelligence to medical education, including personalized instruction, simulation, feedback, evaluation, augmentation of qualitative research, and performance of critical assessment of the existing scientific literature.

摘要

生成式人工智能和大型语言模型是信息处理技术革命的延续,这场革命始于 1947 年晶体管的发明。这些技术受到人工神经网络转换器架构的推动,有望广泛影响社会。显然,这些技术将被用于推动教育创新。医学教育是一项高风险的活动:错误地传授给学生的信息可能多年都不会被发现,直到出现相关的临床情况,而这种错误可能会导致患者受到伤害。在本文中,我讨论了在医学教育中使用生成式人工智能的主要限制因素——幻觉、偏差、成本和安全性,并提出了一些应对这些问题的方法。此外,我还确定了生成式人工智能在医学教育中的潜在应用,包括个性化教学、模拟、反馈、评估、对定性研究的补充以及对现有科学文献的批判性评估。

相似文献

1
Generative Artificial Intelligence and Large Language Models in Primary Care Medical Education.
Fam Med. 2024 Oct;56(9):534-540. doi: 10.22454/FamMed.2024.775525. Epub 2024 Aug 8.
4
A review of ophthalmology education in the era of generative artificial intelligence.
Asia Pac J Ophthalmol (Phila). 2024 Jul-Aug;13(4):100089. doi: 10.1016/j.apjo.2024.100089. Epub 2024 Aug 10.
5
Generative AI in Medical Practice: In-Depth Exploration of Privacy and Security Challenges.
J Med Internet Res. 2024 Mar 8;26:e53008. doi: 10.2196/53008.
6
[Subverting the Future of Teaching: Artificial Intelligence Innovation in Nursing Education].
Hu Li Za Zhi. 2024 Apr;71(2):20-25. doi: 10.6224/JN.202404_71(2).04.
7
Medical education empowered by generative artificial intelligence large language models.
Trends Mol Med. 2023 Dec;29(12):971-973. doi: 10.1016/j.molmed.2023.08.012. Epub 2023 Sep 16.
8
Reshaping medical education: Performance of ChatGPT on a PES medical examination.
Cardiol J. 2024;31(3):442-450. doi: 10.5603/cj.97517. Epub 2023 Oct 13.
9
Is generative artificial intelligence the next step toward a personalized hemodialysis?
Rev Invest Clin. 2023 Dec 18;75(6):309-317. doi: 10.24875/RIC.23000162.
10
Generative artificial intelligence in ophthalmology: current innovations, future applications and challenges.
Br J Ophthalmol. 2024 Sep 20;108(10):1335-1340. doi: 10.1136/bjo-2024-325458.

引用本文的文献

1
Use and Evaluation of Generative Artificial Intelligence by Medical Students in Japan.
JMA J. 2025 Jul 15;8(3):730-735. doi: 10.31662/jmaj.2024-0375. Epub 2025 Jul 2.
3
Use of AI in Family Medicine Publications: A Joint Editorial From Journal Editors.
PRiMER. 2025 Jan 3;9:3. doi: 10.22454/PRiMER.2025.889328. eCollection 2025.
4
Generative artificial intelligence in graduate medical education.
Front Med (Lausanne). 2025 Jan 10;11:1525604. doi: 10.3389/fmed.2024.1525604. eCollection 2024.
6
Use of AI in Family Medicine Publications: A Joint Editorial from Journal Editors.
J Am Board Fam Med. 2025 May 12;38(1):4-8. doi: 10.3122/jabfm.2024.240397R0.
7
Use of AI in Family Medicine Publications: A Joint Editorial From Journal Editors.
Fam Med. 2025 Jan;57(1):1-5. doi: 10.22454/FamMed.2025.466696.
8
Use of AI in family medicine publications: a joint editorial from journal editors.
Fam Med Community Health. 2025 Jan 13;13(1):e003238. doi: 10.1136/fmch-2024-003238.
9
Use of AI in Family Medicine Publications: A Joint Editorial From Journal Editors.
Ann Fam Med. 2025 Jan 27;23(1):1-4. doi: 10.1370/afm.240575.
10
Exploring Large Language Models and the Metaverse for Urologic Applications: Potential, Challenges, and the Path Forward.
Int Neurourol J. 2024 Nov;28(Suppl 2):S65-73. doi: 10.5213/inj.2448402.201. Epub 2024 Nov 30.

本文引用的文献

1
Even with ChatGPT, race matters.
Clin Imaging. 2024 May;109:110113. doi: 10.1016/j.clinimag.2024.110113. Epub 2024 Mar 2.
2
Quality, Accuracy, and Bias in ChatGPT-Based Summarization of Medical Abstracts.
Ann Fam Med. 2024 Mar-Apr;22(2):113-120. doi: 10.1370/afm.3075.
3
Mitigating Racial And Ethnic Bias And Advancing Health Equity In Clinical Algorithms: A Scoping Review.
Health Aff (Millwood). 2023 Oct;42(10):1359-1368. doi: 10.1377/hlthaff.2023.00553.
6
Large language models and the perils of their hallucinations.
Crit Care. 2023 Mar 21;27(1):120. doi: 10.1186/s13054-023-04393-x.
7
Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models.
PLOS Digit Health. 2023 Feb 9;2(2):e0000198. doi: 10.1371/journal.pdig.0000198. eCollection 2023 Feb.
8
Physician Wellness in Academic Cardiovascular Medicine: A Scientific Statement From the American Heart Association.
Circulation. 2022 Oct 18;146(16):e229-e241. doi: 10.1161/CIR.0000000000001093. Epub 2022 Sep 19.
9
The Potential For Bias In Machine Learning And Opportunities For Health Insurers To Address It.
Health Aff (Millwood). 2022 Feb;41(2):212-218. doi: 10.1377/hlthaff.2021.01287.
10
A practical guide for conducting qualitative research in medical education: Part 1-How to interview.
AEM Educ Train. 2021 Jul 1;5(3):e10646. doi: 10.1002/aet2.10646. eCollection 2021 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验