文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

眼科教育在生成式人工智能时代的回顾。

A review of ophthalmology education in the era of generative artificial intelligence.

机构信息

Division of Ophthalmology Informatics and Data Science, The Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA 92037, USA; Jacobs Retina Center, 9415 Campus Point Drive, La Jolla, CA 92037, USA.

Division of Ophthalmology Informatics and Data Science, The Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, 9415 Campus Point Drive, La Jolla, CA 92037, USA; Division of Biomedical Informatics, Department of Medicine, University of California San Diego Health System, University of California San Diego, La Jolla, CA, USA.

出版信息

Asia Pac J Ophthalmol (Phila). 2024 Jul-Aug;13(4):100089. doi: 10.1016/j.apjo.2024.100089. Epub 2024 Aug 10.


DOI:10.1016/j.apjo.2024.100089
PMID:39134176
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11934932/
Abstract

PURPOSE: To explore the integration of generative AI, specifically large language models (LLMs), in ophthalmology education and practice, addressing their applications, benefits, challenges, and future directions. DESIGN: A literature review and analysis of current AI applications and educational programs in ophthalmology. METHODS: Analysis of published studies, reviews, articles, websites, and institutional reports on AI use in ophthalmology. Examination of educational programs incorporating AI, including curriculum frameworks, training methodologies, and evaluations of AI performance on medical examinations and clinical case studies. RESULTS: Generative AI, particularly LLMs, shows potential to improve diagnostic accuracy and patient care in ophthalmology. Applications include aiding in patient, physician, and medical students' education. However, challenges such as AI hallucinations, biases, lack of interpretability, and outdated training data limit clinical deployment. Studies revealed varying levels of accuracy of LLMs on ophthalmology board exam questions, underscoring the need for more reliable AI integration. Several educational programs nationwide provide AI and data science training relevant to clinical medicine and ophthalmology. CONCLUSIONS: Generative AI and LLMs offer promising advancements in ophthalmology education and practice. Addressing challenges through comprehensive curricula that include fundamental AI principles, ethical guidelines, and updated, unbiased training data is crucial. Future directions include developing clinically relevant evaluation metrics, implementing hybrid models with human oversight, leveraging image-rich data, and benchmarking AI performance against ophthalmologists. Robust policies on data privacy, security, and transparency are essential for fostering a safe and ethical environment for AI applications in ophthalmology.

摘要

目的:探索生成式人工智能,特别是大型语言模型(LLM)在眼科学教育和实践中的整合,探讨其应用、益处、挑战和未来方向。

设计:对眼科学中人工智能应用和教育计划的文献进行综述和分析。

方法:分析发表的研究、综述、文章、网站和机构关于 AI 在眼科学中应用的报告。考察纳入 AI 的教育计划,包括课程框架、培训方法以及对 AI 在医学检查和临床病例研究中的表现进行评估。

结果:生成式 AI,特别是 LLM,显示出在眼科学中提高诊断准确性和改善患者护理的潜力。应用包括辅助患者、医生和医学生的教育。然而,AI 幻觉、偏差、缺乏可解释性和过时的训练数据等挑战限制了其临床部署。研究表明,LLM 在眼科委员会考试问题上的准确性存在差异,突出了对更可靠 AI 整合的需求。全国范围内的几个教育计划提供与临床医学和眼科学相关的 AI 和数据科学培训。

结论:生成式 AI 和 LLM 为眼科学教育和实践带来了有前景的进展。通过包含基本 AI 原理、道德准则和更新、无偏差的训练数据的全面课程来应对挑战至关重要。未来的方向包括开发与临床相关的评估指标、实施具有人工监督的混合模型、利用丰富的图像数据以及将 AI 性能与眼科医生进行基准测试。制定关于数据隐私、安全和透明度的稳健政策对于在眼科学中培养 AI 应用的安全和道德环境至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d22/11934932/2c89676349dc/nihms-2064176-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d22/11934932/ddd92a5f3dbf/nihms-2064176-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d22/11934932/14b32d053e1b/nihms-2064176-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d22/11934932/2c89676349dc/nihms-2064176-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d22/11934932/ddd92a5f3dbf/nihms-2064176-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d22/11934932/14b32d053e1b/nihms-2064176-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d22/11934932/2c89676349dc/nihms-2064176-f0003.jpg

相似文献

[1]
A review of ophthalmology education in the era of generative artificial intelligence.

Asia Pac J Ophthalmol (Phila). 2024

[2]
Exploring prospects, hurdles, and road ahead for generative artificial intelligence in orthopedic education and training.

BMC Med Educ. 2024-12-28

[3]
Utility of artificial intelligence-based large language models in ophthalmic care.

Ophthalmic Physiol Opt. 2024-5

[4]
Ethical Considerations and Fundamental Principles of Large Language Models in Medical Education: Viewpoint.

J Med Internet Res. 2024-8-1

[5]
Generative AI in Critical Care Nephrology: Applications and Future Prospects.

Blood Purif. 2024

[6]
Curriculum Frameworks and Educational Programs in AI for Medical Students, Residents, and Practicing Physicians: Scoping Review.

JMIR Med Educ. 2024-7-18

[7]
Quality assurance and validity of AI-generated single best answer questions.

BMC Med Educ. 2025-2-25

[8]
A qualitative survey on perception of medical students on the use of large language models for educational purposes.

Adv Physiol Educ. 2025-3-1

[9]
The Role of Large Language Models in Transforming Emergency Medicine: Scoping Review.

JMIR Med Inform. 2024-5-10

[10]
DeepSeek in Healthcare: Revealing Opportunities and Steering Challenges of a New Open-Source Artificial Intelligence Frontier.

Cureus. 2025-2-18

引用本文的文献

[1]
The application of artificial intelligence-generated content in ophthalmology education.

Front Med (Lausanne). 2025-7-18

[2]
Evaluating the accuracy of advanced language learning models in ophthalmology: A comparative study of ChatGPT-4o and Meta AI's Llama 3.1.

Adv Ophthalmol Pract Res. 2025-1-6

[3]
Evaluating the Performance of ChatGPT 3.5 and 4.0 on StatPearls Oculoplastic Surgery Text- and Image-Based Exam Questions.

Cureus. 2024-11-16

本文引用的文献

[1]
Cross-sectional design and protocol for Artificial Intelligence Ready and Equitable Atlas for Diabetes Insights (AI-READI).

BMJ Open. 2025-2-6

[2]
Hidden flaws behind expert-level accuracy of multimodal GPT-4 vision in medicine.

NPJ Digit Med. 2024-7-23

[3]
Medical education with large language models in ophthalmology: custom instructions and enhanced retrieval capabilities.

Br J Ophthalmol. 2024-9-20

[4]
AI-Generated Draft Replies Integrated Into Health Records and Physicians' Electronic Communication.

JAMA Netw Open. 2024-4-1

[5]
Generative artificial intelligence responses to patient messages in the electronic health record: early lessons learned.

JAMIA Open. 2024-4-10

[6]
Embracing ChatGPT for Medical Education: Exploring Its Impact on Doctors and Medical Students.

JMIR Med Educ. 2024-4-10

[7]
Breaking Barriers in Behavioral Change: The Potential of Artificial Intelligence-Driven Motivational Interviewing.

J Glaucoma. 2024-7-1

[8]
ChatGPT performance on the American Shoulder and Elbow Surgeons maintenance of certification exam.

J Shoulder Elbow Surg. 2024-9

[9]
Can large language models reason about medical questions?

Patterns (N Y). 2024-3-1

[10]
Generative Artificial Intelligence to Transform Inpatient Discharge Summaries to Patient-Friendly Language and Format.

JAMA Netw Open. 2024-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索