Suppr超能文献

细胞特异性非天然氨基酸掺入的合成生物学。

Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.

机构信息

Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

出版信息

Chem Rev. 2024 Sep 25;124(18):10577-10617. doi: 10.1021/acs.chemrev.3c00938. Epub 2024 Aug 29.

Abstract

Over the past two decades, genetic code expansion (GCE)-enabled methods for incorporating noncanonical amino acids (ncAAs) into proteins have significantly advanced the field of synthetic biology while also reaping substantial benefits from it. On one hand, they provide synthetic biologists with a powerful toolkit to enhance and diversify biological designs beyond natural constraints. Conversely, synthetic biology has not only propelled the development of ncAA incorporation through sophisticated tools and innovative strategies but also broadened its potential applications across various fields. This Review delves into the methodological advancements and primary applications of site-specific cellular incorporation of ncAAs in synthetic biology. The topics encompass expanding the genetic code through noncanonical codon addition, creating semiautonomous and autonomous organisms, designing regulatory elements, and manipulating and extending peptide natural product biosynthetic pathways. The Review concludes by examining the ongoing challenges and future prospects of GCE-enabled ncAA incorporation in synthetic biology and highlighting opportunities for further advancements in this rapidly evolving field.

摘要

在过去的二十年中,遗传密码扩展(GCE)使非天然氨基酸(ncAA)掺入蛋白质的方法在推进合成生物学领域的发展的同时,也从中获得了巨大的收益。一方面,它们为合成生物学家提供了一个强大的工具包,使他们能够超越自然限制,增强和多样化生物设计。另一方面,合成生物学不仅通过复杂的工具和创新策略推动了 ncAA 掺入的发展,而且还拓宽了其在各个领域的潜在应用。本文深入探讨了在合成生物学中通过定点细胞掺入非天然氨基酸的方法学进展和主要应用。这些主题包括通过非典型密码子添加扩展遗传密码、创建半自主和自主生物体、设计调控元件以及操纵和扩展肽天然产物生物合成途径。本文最后通过检查 GCE 使能 ncAA 掺入在合成生物学中面临的持续挑战和未来展望,并强调了在这个快速发展的领域进一步发展的机会。

相似文献

4
Hijacking Translation Initiation for Synthetic Biology.劫持翻译起始用于合成生物学。
Chembiochem. 2020 May 15;21(10):1387-1396. doi: 10.1002/cbic.202000017. Epub 2020 Mar 2.
7
8
Learning from Nature to Expand the Genetic Code.从大自然中学习,拓展遗传密码。
Trends Biotechnol. 2021 May;39(5):460-473. doi: 10.1016/j.tibtech.2020.08.003. Epub 2020 Sep 4.

本文引用的文献

3
tRNA engineering strategies for genetic code expansion.用于遗传密码扩展的tRNA工程策略。
Front Genet. 2024 Mar 7;15:1373250. doi: 10.3389/fgene.2024.1373250. eCollection 2024.
4
Genetic Parts and Enabling Tools for Biocircuit Design.用于生物电路设计的遗传元件和支撑工具。
ACS Synth Biol. 2024 Mar 15;13(3):697-713. doi: 10.1021/acssynbio.3c00691. Epub 2024 Mar 1.
5
Machine learning for functional protein design.用于功能性蛋白质设计的机器学习
Nat Biotechnol. 2024 Feb;42(2):216-228. doi: 10.1038/s41587-024-02127-0. Epub 2024 Feb 15.
6
A bumpy road ahead for genetic biocontainment.遗传生物遏制的崎岖道路。
Nat Commun. 2024 Jan 20;15(1):650. doi: 10.1038/s41467-023-44531-1.
7
Rise of synthetic yeast: Charting courses to new applications.合成酵母的崛起:开拓新应用之路。
Cell Genom. 2023 Nov 9;3(11):100438. doi: 10.1016/j.xgen.2023.100438. eCollection 2023 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验