酵母中增强非标准氨基酸掺入的全基因组筛选。
Genome-Wide Screen for Enhanced Noncanonical Amino Acid Incorporation in Yeast.
机构信息
Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States.
Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States.
出版信息
ACS Synth Biol. 2022 Nov 18;11(11):3669-3680. doi: 10.1021/acssynbio.2c00267. Epub 2022 Nov 8.
Numerous applications of noncanonical amino acids (ncAAs) in basic biology and therapeutic development require efficient protein biosynthesis using an expanded genetic code. However, achieving such incorporation at repurposed stop codons in cells is generally inefficient and limited by complex cellular processes that preserve the fidelity of protein synthesis. A more comprehensive understanding of the processes that contribute to ncAA incorporation would aid in the development of genomic engineering strategies for augmenting genetic code manipulation. In this work, we used a series of fluorescent reporters to screen a pooled molecular barcoded yeast knockout (YKO) collection. Fluorescence-activated cell sorting enabled isolation of strains encoding single-gene deletions exhibiting improved ncAA incorporation efficiency in response to the amber (TAG) stop codon; 55 unique candidate deletions were identified. The deleted genes encoded for proteins that participate in diverse cellular processes, including many genes that have no known connection with protein translation. We then verified that two knockouts, and , exhibited improved ncAA incorporation efficiency starting from independently acquired strains possessing the knockouts. Using additional orthogonal translation systems and ncAAs, we determined that and enhance ncAA incorporation efficiency without loss of fidelity over a wide range of conditions. Our findings highlight opportunities for further modulating gene expression with genetic, genomic, and synthetic biology approaches to improve ncAA incorporation efficiency. In addition, these discoveries have the potential to enhance our fundamental understanding of protein translation. Ultimately, cells that efficiently biosynthesize ncAA-containing proteins will streamline the realization of applications utilizing expanded genetic codes ranging from basic biology to drug discovery.
许多非天然氨基酸(ncAAs)在基础生物学和治疗开发中的应用需要使用扩展遗传密码高效合成蛋白质。然而,在细胞中重新利用终止密码子实现这种掺入通常效率低下,并受到复杂的细胞过程的限制,这些过程可确保蛋白质合成的保真度。更全面地了解有助于 ncAA 掺入的过程,将有助于开发基因组工程策略,以增强遗传密码操作。在这项工作中,我们使用一系列荧光报告物筛选了一个汇集的分子条形码酵母敲除(YKO)文库。荧光激活细胞分选使能够分离出对琥珀(TAG)终止密码子表现出提高的 ncAA 掺入效率的单基因缺失株系;鉴定出 55 个独特的候选缺失。缺失的基因编码参与多种细胞过程的蛋白质,包括许多与蛋白质翻译没有已知联系的基因。然后,我们验证了两个敲除株系 和 从独立获得的具有敲除的菌株开始表现出提高的 ncAA 掺入效率。使用额外的正交翻译系统和 ncAAs,我们确定 和 提高了 ncAA 掺入效率,而在广泛的条件下不失真。我们的发现为进一步利用遗传、基因组和合成生物学方法调节基因表达以提高 ncAA 掺入效率提供了机会。此外,这些发现有可能增强我们对蛋白质翻译的基本理解。最终,能够高效生物合成含 ncAA 蛋白质的细胞将简化利用扩展遗传密码的应用,从基础生物学到药物发现。
相似文献
ACS Synth Biol. 2022-11-18
ACS Synth Biol. 2022-7-15
ACS Synth Biol. 2021-11-19
ACS Synth Biol. 2022-5-20
Methods Mol Biol. 2022
Biochim Biophys Acta Gen Subj. 2016-12-2
Methods Mol Biol. 2024
引用本文的文献
Chem Rev. 2024-7-24
Methods Mol Biol. 2024
Curr Opin Microbiol. 2023-12
本文引用的文献
ACS Synth Biol. 2022-7-15
ACS Synth Biol. 2022-5-20
Curr Opin Biotechnol. 2022-6
ACS Synth Biol. 2021-11-19
Biochemistry. 2021-11-23
Bioengineering (Basel). 2021-3-23
ACS Chem Biol. 2021-2-19