Suppr超能文献

用于单图像超分辨率的整流二进制网络。

Rectified Binary Network for Single-Image Super-Resolution.

作者信息

Xin Jingwei, Wang Nannan, Jiang Xinrui, Li Jie, Wang Xiaoyu, Gao Xinbo

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 May;36(5):9341-9355. doi: 10.1109/TNNLS.2024.3438432. Epub 2025 May 2.

Abstract

Binary neural network (BNN) is an effective approach to reduce the memory usage and the computational complexity of full-precision convolutional neural networks (CNNs), which has been widely used in the field of deep learning. However, there are different properties between BNNs and real-valued models, making it difficult to draw on the experience of CNN composition to develop BNN. In this article, we study the application of binary network to the single-image super-resolution (SISR) task in which the network is trained for restoring original high-resolution (HR) images. Generally, the distribution of features in the network for SISR is more complex than those in recognition models for preserving the abundant image information, e.g., texture, color, and details. To enhance the representation ability of BNN, we explore a novel activation-rectified inference (ARI) module that achieves a more complete representation of features by combining observations from different quantitative perspectives. The activations are divided into several parts with different quantification intervals and are inferred independently. This allows the binary activations to retain more image detail and yield finer inference. In addition, we further propose an adaptive approximation estimator (AAE) for gradually learning the accurate gradient estimation interval in each layer to alleviate the optimization difficulty. Experiments conducted on several benchmarks show that our approach is able to learn a binary SISR model with superior performance over the state-of-the-art methods. The code will be released at https://github.com/jwxintt/Rectified-BSR.

摘要

二值神经网络(BNN)是一种有效降低全精度卷积神经网络(CNN)内存使用和计算复杂度的方法,已在深度学习领域得到广泛应用。然而,BNN与实值模型具有不同特性,这使得借鉴CNN的构建经验来开发BNN变得困难。在本文中,我们研究二值网络在单图像超分辨率(SISR)任务中的应用,其中网络经过训练用于恢复原始高分辨率(HR)图像。一般来说,用于SISR的网络中的特征分布比识别模型中的特征分布更复杂,以便保留丰富的图像信息,例如纹理、颜色和细节。为了增强BNN的表示能力,我们探索了一种新颖的激活整流推理(ARI)模块,该模块通过结合来自不同量化视角的观察结果来实现对特征更完整的表示。激活被划分为具有不同量化区间的几个部分,并独立进行推理。这使得二值激活能够保留更多图像细节并产生更精细的推理。此外,我们进一步提出了一种自适应近似估计器(AAE),用于逐步学习每层中的精确梯度估计区间,以缓解优化困难。在多个基准上进行的实验表明,我们的方法能够学习到一个性能优于现有方法的二值SISR模型。代码将在https://github.com/jwxintt/Rectified-BSR上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验