Department of Electrical Engineering, Capital University of Science and Technology, Islamabad Expressway, Kahuta Road, Islamabad, 44000, Pakistan.
School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom.
Phys Med. 2024 Sep;125:104505. doi: 10.1016/j.ejmp.2024.104505. Epub 2024 Aug 28.
The purpose of this study is to develop an automated method using deep learning for the reliable and precise quantification of left ventricle structure and function from echocardiogram videos, eliminating the need to identify end-systolic and end-diastolic frames. This addresses the variability and potential inaccuracies associated with manual quantification, aiming to improve the diagnosis and management of cardiovascular conditions.
A single, fully automated multitask network, the EchoFused Network (EFNet) is introduced that simultaneously addresses both left ventricle segmentation and ejection fraction estimation tasks through cross-module fusion. Our proposed approach utilizes semi-supervised learning to estimate the ejection fraction from the entire cardiac cycle, yielding more dependable estimations and obviating the need to identify specific frames. To facilitate joint optimization, the losses from task-specific modules are combined using a normalization technique, ensuring commensurability on a comparable scale.
The assessment of the proposed model on a publicly available dataset, EchoNet-Dynamic, shows significant performance improvement, achieving an MAE of 4.35% for ejection fraction estimation and DSC values of 0.9309 (end-diastolic) and 0.9135 (end-systolic) for left ventricle segmentation.
The study demonstrates the efficacy of EFNet, a multitask deep learning network, in simultaneously quantifying left ventricle structure and function through cross-module fusion on echocardiogram data.
本研究旨在开发一种基于深度学习的自动化方法,从超声心动图视频中可靠而精确地量化左心室结构和功能,无需识别收缩末期和舒张末期帧。这解决了手动量化相关的变异性和潜在不准确性问题,旨在改善心血管疾病的诊断和管理。
引入了一种单一的、完全自动化的多任务网络,即 EchoFused Network(EFNet),该网络通过跨模块融合同时解决左心室分割和射血分数估计任务。我们的方法利用半监督学习从整个心动周期估计射血分数,从而产生更可靠的估计值,并避免识别特定的帧。为了便于联合优化,使用归一化技术组合来自特定于任务的模块的损失,确保在可比尺度上的可比性。
在一个公开的数据集 EchoNet-Dynamic 上评估所提出的模型,结果显示出显著的性能改进,在射血分数估计方面的 MAE 为 4.35%,在左心室分割方面的 DSC 值分别为 0.9309(舒张末期)和 0.9135(收缩末期)。
该研究证明了 EFNet 的有效性,EFNet 是一种多任务深度学习网络,通过在超声心动图数据上进行跨模块融合,同时量化左心室的结构和功能。