Division of Image Processing, Department of Radiology, Leiden University Medical Center, the Netherlands.
Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
J Cardiovasc Magn Reson. 2024 Summer;26(1):100003. doi: 10.1016/j.jocmr.2023.100003. Epub 2024 Jan 10.
4D flow MRI enables assessment of cardiac function and intra-cardiac blood flow dynamics from a single acquisition. However, due to the poor contrast between the chambers and surrounding tissue, quantitative analysis relies on the segmentation derived from a registered cine MRI acquisition. This requires an additional acquisition and is prone to imperfect spatial and temporal inter-scan alignment. Therefore, in this work we developed and evaluated deep learning-based methods to segment the left ventricle (LV) from 4D flow MRI directly.
We compared five deep learning-based approaches with different network structures, data pre-processing and feature fusion methods. For the data pre-processing, the 4D flow MRI data was reformatted into a stack of short-axis view slices. Two feature fusion approaches were proposed to integrate the features from magnitude and velocity images. The networks were trained and evaluated on an in-house dataset of 101 subjects with 67,567 2D images and 3030 3D volumes. The performance was evaluated using various metrics including Dice, average surface distance (ASD), end-diastolic volume (EDV), end-systolic volume (ESV), LV ejection fraction (LVEF), LV blood flow kinetic energy (KE) and LV flow components. The Monte Carlo dropout method was used to assess the confidence and to describe the uncertainty area in the segmentation results.
Among the five models, the model combining 2D U-Net with late fusion method operating on short-axis reformatted 4D flow volumes achieved the best results with Dice of 84.52% and ASD of 3.14 mm. The best averaged absolute and relative error between manual and automated segmentation for EDV, ESV, LVEF and KE was 19.93 ml (10.39%), 17.38 ml (22.22%), 7.37% (13.93%) and 0.07 mJ (5.61%), respectively. Flow component results derived from automated segmentation showed high correlation and small average error compared to results derived from manual segmentation.
Deep learning-based methods can achieve accurate automated LV segmentation and subsequent quantification of volumetric and hemodynamic LV parameters from 4D flow MRI without requiring an additional cine MRI acquisition.
4D 流 MRI 能够从单次采集评估心脏功能和心内血流动力学。然而,由于房室和周围组织之间的对比度差,定量分析依赖于从注册的电影 MRI 采集中得出的分割。这需要额外的采集,并且容易出现空间和时间扫描间配准不完美的问题。因此,在这项工作中,我们开发并评估了基于深度学习的方法,以便直接从 4D 流 MRI 中分割左心室(LV)。
我们比较了五种具有不同网络结构、数据预处理和特征融合方法的基于深度学习的方法。对于数据预处理,将 4D 流 MRI 数据重新格式化为短轴视图的堆叠。提出了两种特征融合方法来整合来自幅度和速度图像的特征。该网络在一个由 101 名受试者组成的内部数据集上进行了训练和评估,该数据集包含 67567 个 2D 图像和 3030 个 3D 容积。使用各种指标评估了性能,包括 Dice、平均表面距离(ASD)、舒张末期容积(EDV)、收缩末期容积(ESV)、左心室射血分数(LVEF)、左心室血流动能(KE)和左心室血流分量。使用蒙特卡罗随机丢除法评估了分割结果的置信度和描述不确定性区域。
在这五种模型中,在经过短轴重新格式化的 4D 流容积上运行的结合了 2D U-Net 和晚期融合方法的模型取得了最好的结果,Dice 为 84.52%,ASD 为 3.14mm。手动和自动分割的 EDV、ESV、LVEF 和 KE 的平均绝对和相对误差分别为 19.93ml(10.39%)、17.38ml(22.22%)、7.37%(13.93%)和 0.07mJ(5.61%)。与手动分割相比,自动分割得到的血流分量结果具有较高的相关性和较小的平均误差。
基于深度学习的方法可以从 4D 流 MRI 中实现左心室的精确自动分割,并随后对容积和血流动力学左心室参数进行定量分析,而无需额外的电影 MRI 采集。