Picker Julian, Gan Ziyang, Neumann Christof, George Antony, Turchanin Andrey
Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 10, Jena 07743, Germany.
Institute of Physical Chemistry, Friedrich Schiller University Jena, Lessingstraße 10, Jena 07743, Germany; Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, Jena 07743, Germany; Abbe Center of Photonics (ACP), Albert-Einstein-Straße 6, Jena 07745, Germany.
Micron. 2024 Nov;186:103708. doi: 10.1016/j.micron.2024.103708. Epub 2024 Aug 24.
Monolayers of transition metal dichalcogenides (TMDs) possess high potential for applications in novel electronic and optoelectronic devices and therefore the development of methods for their scalable growth is of high importance. Among different suggested approaches, metal-organic chemical vapor deposition (MOCVD) is the most promising one for technological applications because of its lower growth temperature compared to the most other methods, e.g., conventional chemical vapor or atomic layer deposition (CVD, ALD). Here we demonstrate for the first time the epitaxial growth of MoS monolayers on Au(111) by MOCVD at 450 °C. We confirm the high quality of the grown TMD monolayers down to the atomic scale using several complementary methods. These include Raman spectroscopy, non-contact atomic force microscopy (nc-AFM), X-ray photoelectron spectroscopy and scanning tunneling microscopy (STM). The topographic corrugation of the MoS monolayer on Au(111), revealed in a moiré structure, was measured as ≈20 pm by nc-AFM. The estimated defect density calculated from STM images of the as-grown MoS monolayers is in the order of 10 vacancies/cm. The defects are mainly caused by single sulfur vacancies. Our approach is a step forward towards the technologically relevant growth of high-quality, large-area TMD monolayers.
过渡金属二硫属化物(TMDs)单层在新型电子和光电器件中具有很高的应用潜力,因此开发其可扩展生长的方法至关重要。在不同的建议方法中,金属有机化学气相沉积(MOCVD)因其生长温度比大多数其他方法(如传统化学气相沉积或原子层沉积(CVD、ALD))低,是技术应用中最有前景的方法。在此,我们首次展示了通过MOCVD在450°C下在Au(111)上外延生长MoS单层。我们使用几种互补方法证实了生长的TMD单层在原子尺度上的高质量。这些方法包括拉曼光谱、非接触原子力显微镜(nc-AFM)、X射线光电子能谱和扫描隧道显微镜(STM)。通过nc-AFM测量,在莫尔条纹结构中揭示的Au(111)上MoS单层的形貌起伏约为20 pm。根据生长的MoS单层的STM图像计算出的估计缺陷密度约为10个空位/cm。缺陷主要由单个硫空位引起。我们的方法朝着高质量、大面积TMD单层的技术相关生长迈出了一步。