Suppr超能文献

法佐尔的多样性和 DNA 切割机制的结构见解。

Structural insights into the diversity and DNA cleavage mechanism of Fanzor.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Cambridge, MA 02139, USA.

Cryo-Electron Microscopy Core, NYU Grossman School of Medicine, New York, NY 10016, USA.

出版信息

Cell. 2024 Sep 19;187(19):5238-5252.e20. doi: 10.1016/j.cell.2024.07.050. Epub 2024 Aug 28.

Abstract

Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.

摘要

Fanzor (Fz) 是一种广泛存在于真核生物域中的 ωRNA 指导的内切核酸酶,具有独特的基因编辑潜力。在这里,我们描述了来自三种不同生物的 Fzs 的结构。我们发现,Fzs 无论 ωRNA 的长度如何,都具有共同的 ωRNA 相互作用界面,而 ωRNA 在不同物种之间差异很大。分析还揭示了 Fz 的 DNA 识别模式和解链能力,以及非典型催化位点的存在。这些结构展示了 Fz 的蛋白构象如何转变,以允许双链 DNA 结合到 R 环中的活性位点。从机制上看,对不同状态下结构的研究表明,RuvC 结构域上盖环的构象受向导/DNA 异源双链体形成的控制,调节核酸酶的激活和单切割位点处的 DNA 双链置换。我们的研究结果阐明了 Fz 的作用机制,为工程化努力奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/670a/11423790/ed02f5731ef4/nihms-2021671-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验