Suppr超能文献

糖尿病与早期发育:表观遗传学、生物应激与衰老

Diabetes and Early Development: Epigenetics, Biological Stress, and Aging.

作者信息

Wang Guanglei, Shen Wei-Bin, Chen Anna Wu, Reece E Albert, Yang Peixin

机构信息

Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland.

Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland.

出版信息

Am J Perinatol. 2025 Jun;42(8):977-987. doi: 10.1055/a-2405-1493. Epub 2024 Aug 29.

Abstract

Pregestational diabetes, either type 1 or type 2 diabetes, induces structural birth defects including neural tube defects and congenital heart defects in human fetuses. Rodent models of type 1 and type 2 diabetic embryopathy have been established and faithfully mimic human conditions. Hyperglycemia of maternal diabetes triggers oxidative stress in the developing neuroepithelium and the embryonic heart leading to the activation of proapoptotic kinases and excessive cell death. Oxidative stress also activates the unfolded protein response and endoplasmic reticulum stress. Hyperglycemia alters epigenetic landscapes by suppressing histone deacetylation, perturbing microRNA (miRNA) expression, and increasing DNA methylation. At cellular levels, besides the induction of cell apoptosis, hyperglycemia suppresses cell proliferation and induces premature senescence. Stress signaling elicited by maternal diabetes disrupts cellular organelle homeostasis leading to mitochondrial dysfunction, mitochondrial dynamic alteration, and autophagy impairment. Blocking oxidative stress, kinase activation, and cellular senescence ameliorates diabetic embryopathy. Deleting the gene or restoring abolishes maternal diabetes hyperglycemia-induced senescence and cellular stress, respectively. Both the autophagy activator trehalose and the senomorphic rapamycin can alleviate diabetic embryopathy. Thus, targeting cellular stress, miRNAs, senescence, or restoring autophagy or mitochondrial fusion is a promising approach to prevent poorly controlled maternal diabetes-induced structural birth defects. In this review, we summarize the causal events in diabetic embryopathy and propose preventions for this pathological condition. · Maternal diabetes induces structural birth defects.. · Kinase signaling and cellular organelle stress are critically involved in neural tube defects.. · Maternal diabetes increases DNA methylation and suppresses developmental gene expression.. · Cellular apoptosis and senescence are induced by maternal diabetes in the neuroepithelium.. · microRNAs disrupt mitochondrial fusion leading to congenital heart diseases in diabetic pregnancy..

摘要

孕前糖尿病,即1型或2型糖尿病,会导致人类胎儿出现包括神经管缺陷和先天性心脏缺陷在内的结构性出生缺陷。1型和2型糖尿病胚胎病的啮齿动物模型已经建立,并能如实地模拟人类情况。母体糖尿病的高血糖会在发育中的神经上皮和胚胎心脏中引发氧化应激,导致促凋亡激酶的激活和过度的细胞死亡。氧化应激还会激活未折叠蛋白反应和内质网应激。高血糖通过抑制组蛋白去乙酰化、扰乱微小RNA(miRNA)表达和增加DNA甲基化来改变表观遗传格局。在细胞水平上,除了诱导细胞凋亡外,高血糖还会抑制细胞增殖并诱导过早衰老。母体糖尿病引发的应激信号会破坏细胞器稳态,导致线粒体功能障碍、线粒体动态改变和自噬受损。阻断氧化应激、激酶激活和细胞衰老可改善糖尿病胚胎病。分别删除该基因或恢复该基因可消除母体糖尿病高血糖诱导的衰老和细胞应激。自噬激活剂海藻糖和衰老形态调节剂雷帕霉素都可以减轻糖尿病胚胎病。因此,针对细胞应激、miRNA、衰老,或恢复自噬或线粒体融合是预防母体糖尿病控制不佳所致结构性出生缺陷的一种有前景的方法。在本综述中,我们总结了糖尿病胚胎病中的因果事件,并提出了针对这种病理状况的预防措施。· 母体糖尿病会导致结构性出生缺陷。· 激酶信号传导和细胞器应激与神经管缺陷密切相关。· 母体糖尿病会增加DNA甲基化并抑制发育基因表达。· 母体糖尿病在神经上皮中诱导细胞凋亡和衰老。· miRNA破坏线粒体融合导致糖尿病妊娠中的先天性心脏病。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验