Suppr超能文献

机器学习模型揭示了从急诊科就诊到急性心理健康病房入院的决定因素。

Machine Learning Model Reveals Determinators for Admission to Acute Mental Health Wards From Emergency Department Presentations.

机构信息

RMIT University, Melbourne, Victoria, Australia.

Central Coast Research Institute, Gosford, Australia.

出版信息

Int J Ment Health Nurs. 2024 Dec;33(6):2354-2369. doi: 10.1111/inm.13402. Epub 2024 Aug 29.

Abstract

This research addresses the critical issue of identifying factors contributing to admissions to acute mental health (MH) wards for individuals presenting to the emergency department (ED) with MH concerns as their primary issue, notably suicidality. This study aims to leverage machine learning (ML) models to assess the likelihood of admission to acute MH wards for this vulnerable population. Data collection for this study used existing ED data from 1 January 2016 to 31 December 2021. Data selection was based on specific criteria related to the presenting problem. Analysis was conducted using Python and the Interpretable Machine Learning (InterpretML) machine learning library. InterpretML calculates overall importance based on the mean absolute score, which was used to measure the impact of each feature on admission. A person's 'Age' and 'Triage category' are ranked significantly higher than 'Facility identifier', 'Presenting problem' and 'Active Client'. The contribution of other presentation features on admission shows a minimal effect. Aligning the models closely with service delivery will help services understand their service users and provide insight into financial and clinical variations. Suicidal ideation negatively correlates to admission yet represents the largest number of presentations. The nurse's role at triage is a critical factor in assessing the needs of the presenting individual. The gap that emerges in this context is significant; MH triage requires a complex understanding of MH and presents a significant challenge in the ED. Further research is required to explore the role that ML can provide in assisting clinicians in assessment.

摘要

这项研究解决了一个关键问题,即确定导致因主要心理健康问题(MH)就诊的个体被收入急性 MH 病房的因素,尤其是自杀意念。本研究旨在利用机器学习(ML)模型评估该弱势群体被收入急性 MH 病房的可能性。本研究的数据收集使用了 2016 年 1 月 1 日至 2021 年 12 月 31 日期间现有的 ED 数据。数据选择基于与就诊问题相关的特定标准。分析使用 Python 和可解释机器学习(InterpretML)机器学习库进行。InterpretML 根据平均绝对分数计算整体重要性,用于衡量每个特征对入院的影响。一个人的“年龄”和“分诊类别”比“机构标识符”、“就诊问题”和“活动客户”排名显著更高。就诊特征对入院的影响显示出最小的效果。使模型与服务提供紧密一致将有助于服务部门了解其服务用户,并深入了解财务和临床差异。自杀意念与入院呈负相关,但代表了最大数量的就诊。护士在分诊中的角色是评估就诊个体需求的关键因素。在这种情况下出现的差距是显著的;MH 分诊需要对 MH 有复杂的理解,并且在 ED 中提出了重大挑战。需要进一步研究探索 ML 在协助临床医生评估方面可以提供的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验