Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil.
Sci Rep. 2024 Aug 29;14(1):20075. doi: 10.1038/s41598-024-70655-5.
The brain is understood as an intricate biological system composed of numerous elements. It is susceptible to various physical and chemical influences, including temperature. The literature extensively explores the conditions that influence synapses in the context of cellular communication. However, the understanding of how the brain's global physical conditions can modulate ephaptic communication remains limited due to the poorly understood nature of ephapticity. This study proposes an adaptation of the Hodgkin and Huxley (HH) model to investigate the effects of ephaptic entrainment in response to thermal changes (HH-E). The analysis focuses on two distinct neuronal regimes: subthreshold and suprathreshold. In the subthreshold regime, circular statistics are used to demonstrate the dependence of phase differences with temperature. In the suprathreshold regime, the Inter-Spike Interval are employed to estimate phase preferences and changes in the spiking pattern. Temperature influences the model's ephaptic interactions and can modify its preferences for spiking frequency, with the direction of this change depending on specific model conditions and the temperature range under consideration. Furthermore, temperature enhance the anti-phase differences relationship between spikes and the external ephaptic signal. In the suprathreshold regime, ephaptic entrainment is also influenced by temperature, especially at low frequencies. This study reveals the susceptibility of ephaptic entrainment to temperature variations in both subthreshold and suprathreshold regimes and discusses the importance of ephaptic communication in the contexts where temperature may plays a significant role in neural physiology, such as inflammatory processes, fever, and epileptic seizures.
大脑被理解为一个由众多元素组成的复杂生物系统。它易受各种物理和化学影响,包括温度。文献广泛探讨了影响细胞通讯中突触的条件。然而,由于对电突触的性质了解甚少,大脑整体物理条件如何调节电突触通讯的理解仍然有限。本研究提出了一种对 Hodgkin-Huxley (HH) 模型的改编,以研究热变化(HH-E)对电突触传入的影响。该分析侧重于两个不同的神经元状态:亚阈和超阈。在亚阈状态下,使用圆统计来证明相位差与温度的依赖性。在超阈状态下,使用脉冲间隔来估计相位偏好和脉冲模式的变化。温度会影响模型的电突触相互作用,并可以改变其对脉冲频率的偏好,这种变化的方向取决于特定的模型条件和所考虑的温度范围。此外,温度增强了脉冲和外部电突触信号之间的反相差异关系。在超阈状态下,电突触传入也受到温度的影响,特别是在低频时。本研究揭示了电突触传入在亚阈和超阈状态下对温度变化的敏感性,并讨论了在温度可能在神经生理学中发挥重要作用的情况下,如炎症过程、发热和癫痫发作,电突触通讯的重要性。