基于磁共振成像放射组学和机器学习的鼻窦恶性肿瘤预测模型的开发与验证

Development and validation of a prediction model for malignant sinonasal tumors based on MR radiomics and machine learning.

作者信息

Wang Yuchen, Han Qinghe, Wen Baohong, Yang Bingbing, Zhang Chen, Song Yang, Zhang Luo, Xian Junfang

机构信息

Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Department of Radiology, The Second Hospital of Jilin University, Changchun, China.

出版信息

Eur Radiol. 2025 Apr;35(4):2074-2083. doi: 10.1007/s00330-024-11033-7. Epub 2024 Aug 30.

Abstract

OBJECTIVES

This study aimed to utilize MR radiomics-based machine learning classifiers on a large-sample, multicenter dataset to develop an optimal model for predicting malignant sinonasal tumors and tumor-like lesions.

METHODS

This study included 1711 adult patients (875 benign and 836 malignant) with sinonasal tumors or tumor-like lesions from three institutions. Patients from institution 1 (n = 1367) constituted both the training and validation cohorts, while those from institution 2 and 3 (n = 158/186) made up the test cohorts. Manual segmentation of the region of interest of the tumor was performed on T1WI, T2WI, and contrast-enhanced T1WI (CE-T1WI). Data normalization, dimensional reductions, feature selection, and classifications were performed using ten machine-learning classifiers. Four fusion models, namely T1WI + T2WI, T1WI + CE-T1WI, T2WI + CE-T1WI, and T1WI + T2WI + CE-T1WI, were constructed using the top ten features with the highest contribution in feature selection in the optimal models of T1WI, T2WI, and CE-T1WI. The Delong test compared areas under the curve (AUC) between models.

RESULTS

The AUCs of training/validation/test1/test2 datasets for T1WI, T2WI, and CE-T1WI were 0.900/0.842/0.872/0.839, 0.876/0.789/0.842/0.863, and 0.899/0.824/0.831/0.707, respectively. The fusion model from T1WI + T2WI + CE-T1WI had the highest AUC. The AUCs of training/validation/test1/test2 datasets were 0.947/0.849/0.871/0.887. The T1WI + T2WI + CE-T1WI model demonstrated a significantly higher AUC than the T2WI + CE-T1WI model in both cohorts (p < 0.05) and outperformed the T2WI model in test 1 (p = 0.008) and the T1WI model in test 2 (p = 0.006).

CONCLUSIONS

This fusion model based on radiomics from T1WI + T2WI + CE-T1WI images and machine learning can improve the power in predicting malignant sinonasal tumors with high accuracy, resilience, and robustness.

CLINICAL RELEVANCE STATEMENT

Our study proposes a radiomics-based machine learning fusion model from T1- and T2-weighted images and contrast-enhanced T1-weighted images, which can non-invasively identify the nature of sinonasal tumors and improve the performance in predicting malignant sinonasal tumors.

KEY POINTS

Differentiating benign and malignant sinonasal tumors is difficult due to similar clinical presentations. A radiomics model from T1 + T2 + contrast-enhanced T1 images can identify the nature of sinonasal tumors. This model can help distinguish benign and malignant sinonasal tumors.

摘要

目的

本研究旨在利用基于磁共振成像(MR)影像组学的机器学习分类器,在一个大样本、多中心数据集中开发一种预测鼻窦恶性肿瘤和肿瘤样病变的最优模型。

方法

本研究纳入了来自三个机构的1711例患有鼻窦肿瘤或肿瘤样病变的成年患者(875例良性病变和836例恶性病变)。机构1的患者(n = 1367)组成训练队列和验证队列,而机构2和3的患者(n = 158/186)组成测试队列。在T1加权成像(T1WI)、T2加权成像(T2WI)和对比增强T1加权成像(CE-T1WI)上对肿瘤感兴趣区域进行手动分割。使用十种机器学习分类器进行数据归一化、降维、特征选择和分类。利用T1WI、T2WI和CE-T1WI最优模型中特征选择贡献最高的前十位特征构建四个融合模型,即T1WI + T2WI、T1WI + CE-T1WI、T2WI + CE-T1WI和T1WI + T2WI + CE-T1WI。采用德龙检验比较各模型之间的曲线下面积(AUC)。

结果

T1WI、T2WI和CE-T1WI训练/验证/测试1/测试2数据集的AUC分别为0.900/0.842/0.872/0.839、0.876/0.789/0.842/0.863和0.899/0.824/0.831/0.707。T1WI + T2WI + CE-T1WI融合模型的AUC最高。其训练/验证/测试1/测试2数据集的AUC分别为0.947/0.849/0.871/0.887。在两个队列中,T1WI + T2WI + CE-T1WI模型的AUC均显著高于T2WI + CE-T1WI模型(p < 0.05),且在测试1中优于T2WI模型(p = 0.008),在测试2中优于T1WI模型(p = 0.006)。

结论

这种基于T1WI + T2WI + CE-T1WI图像的影像组学和机器学习的融合模型,能够以高精度、高弹性和高稳健性提高预测鼻窦恶性肿瘤的能力。

临床相关性声明

我们的研究提出了一种基于T1加权和T2加权图像以及对比增强T1加权图像的影像组学机器学习融合模型,该模型可以无创地识别鼻窦肿瘤的性质,并提高预测鼻窦恶性肿瘤的性能。

关键点

由于临床表现相似,鉴别鼻窦良性和恶性肿瘤较为困难。T1 + T2 + 对比增强T1图像的影像组学模型可以识别鼻窦肿瘤的性质。该模型有助于鉴别鼻窦良性和恶性肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索