Singh Shilpa, Gleason Catherine E, Fang Min, Laimon Yasmin N, Khivansara Vishal, Xie Shanhai, Durmaz Yavuz T, Sarkar Aniruddha, Ngo Kenneth, Savla Varunika, Li Yixiang, Abu-Remaileh Muhannad, Li Xinyue, Tuladhar Bishma, Odeh Ranya, Hamkins-Indik Frances, He Daphne, Membreno Miles W, Nosrati Meisam, Gushwa Nathan N, Leung Siegfried S F, Fraga-Walton Breena, Hernandez Luis, Baldomero Miguel P, Lent Bryan M, Spellmeyer David, Luna Joshua F, Hoang Dalena, Gritsenko Yuliana, Chand Manesh, DeMart Megan K, Metobo Sammy, Bhatt Chinmay, Shapiro Justin A, Yang Kai, Dupper Nathan J, Bockus Andrew T, Doench John G, Aggen James B, Liu Li-Fen, Levin Bernard, Wang Evelyn W, Vendrell Iolanda, Fischer Roman, Kessler Benedikt, Gokhale Prafulla C, Signoretti Sabina, Spektor Alexander, Kreatsoulas Constantine, Singh Rajinder, Earp David J, Garcia Pablo D, Nijhawan Deepak, Oser Matthew G
bioRxiv. 2024 Aug 1:2024.08.01.605889. doi: 10.1101/2024.08.01.605889.
Cancer cell proliferation requires precise control of E2F1 activity; excess activity promotes apoptosis. Here, we developed cell-permeable and bioavailable macrocycles that selectively kill small cell lung cancer (SCLC) cells with inherent high E2F1 activity by blocking RxL-mediated interactions of cyclin A and cyclin B with select substrates. Genome-wide CRISPR/Cas9 knockout and random mutagenesis screens found that cyclin A/B RxL macrocyclic inhibitors (cyclin A/Bi) induced apoptosis paradoxically by cyclin B- and Cdk2-dependent spindle assembly checkpoint activation (SAC). Mechanistically, cyclin A/Bi hyperactivate E2F1 and cyclin B by blocking their RxL-interactions with cyclin A and Myt1, respectively, ultimately leading to SAC activation and mitotic cell death. Base editor screens identified cyclin B variants that confer cyclin A/Bi resistance including several variants that disrupted cyclin B:Cdk interactions. Unexpectedly but consistent with our base editor and knockout screens, cyclin A/Bi induced the formation of neo-morphic Cdk2-cyclin B complexes that promote SAC activation and apoptosis. Finally, orally-bioavailable cyclin A/Bi robustly inhibited tumor growth in chemotherapy-resistant patient-derived xenograft models of SCLC. This work uncovers gain-of-function mechanisms by which cyclin A/Bi induce apoptosis in cancers with high E2F activity, and suggests cyclin A/Bi as a therapeutic strategy for SCLC and other cancers driven by high E2F activity.
癌细胞增殖需要精确控制E2F1的活性;活性过高会促进细胞凋亡。在此,我们开发了可穿透细胞且具有生物可利用性的大环化合物,它们通过阻断细胞周期蛋白A和细胞周期蛋白B与特定底物的RxL介导的相互作用,选择性地杀死具有固有高E2F1活性的小细胞肺癌(SCLC)细胞。全基因组CRISPR/Cas9基因敲除和随机诱变筛选发现,细胞周期蛋白A/B RxL大环抑制剂(细胞周期蛋白A/Bi)通过细胞周期蛋白B和Cdk2依赖性纺锤体组装检查点激活(SAC)反常地诱导细胞凋亡。从机制上讲,细胞周期蛋白A/Bi分别通过阻断其与细胞周期蛋白A和Myt1的RxL相互作用来过度激活E2F1和细胞周期蛋白B,最终导致SAC激活和有丝分裂细胞死亡。碱基编辑器筛选确定了赋予细胞周期蛋白A/Bi抗性的细胞周期蛋白B变体,包括几种破坏细胞周期蛋白B:Cdk相互作用的变体。出乎意料但与我们的碱基编辑器和基因敲除筛选结果一致的是,细胞周期蛋白A/Bi诱导形成促进SAC激活和细胞凋亡的新形态Cdk2-细胞周期蛋白B复合物。最后,口服生物可利用的细胞周期蛋白A/Bi在化疗耐药的患者来源的SCLC异种移植模型中强烈抑制肿瘤生长。这项工作揭示了细胞周期蛋白A/Bi在具有高E2F活性的癌症中诱导细胞凋亡的功能获得机制,并表明细胞周期蛋白A/Bi可作为SCLC和其他由高E2F活性驱动的癌症的治疗策略。