Suppr超能文献

发育中的灵长类动物杏仁核中的小胶质细胞形态及早期生活应激的影响。

Microglia morphology in the developing primate amygdala and effects of early life stress.

作者信息

King Dennisha P, Abdalaziz Miral, Majewska Ania K, Cameron Judy L, Fudge Julie L

出版信息

bioRxiv. 2024 Aug 15:2024.08.15.608133. doi: 10.1101/2024.08.15.608133.

Abstract

UNLABELLED

A unique pool of immature glutamatergic neurons in the primate amygdala, known as the paralaminar nucleus (PL), are maturing between infancy and adolescence. The PL is a potential substrate for the steep growth curve of amygdala volume during this developmental period. A microglial component is also embedded among the PL neurons, and likely supports local neuronal maturation and emerging synaptogenesis. Microglia may alter neuronal growth following environmental perturbations such as stress. Using multiple measures, we first found that microglia in the infant primate PL had relatively large somas, and a small arbor size. In contrast, microglia in the adolescent PL had a smaller soma, and a larger dendritic arbor. We then examined microglial morphology in the PL after a novel maternal separation protocol, to examine the effects of early life stress. After maternal separation, the microglia had increased soma size, arbor size and complexity. Surprisingly, strong effects were seen not only in the infant PL, but also in the adolescent PL from subjects who had experienced the separation many years earlier. We conclude that under maternal-rearing conditions, PL microglia morphology tracks PL neuronal growth, progressing to a more 'mature' phenotype by adolescence. Maternal separation has long-lasting effects on microglia, altering their normal developmental trajectory, and resulting in a 'hyper-ramified' phenotype that persists for years. We speculate that these changes have consequences for neuronal development in young primates.

SIGNIFICANCE STATEMENT

The paralaminar (PL) nucleus of the amygdala is an important source of plasticity, due to its unique repository of immature glutamatergic neurons. PL immature neurons mature between birth and adolescence. This process is likely supported by synaptogenesis, which requires microglia. Between infancy and adolescence in macaques, PL microglia became more dense, and shifted to a 'ramified' phenotype, consistent with increased synaptic pruning functions. Early life stress in the form of maternal separation, however, blunted this normal trajectory, leading to persistent 'parainflammatory' microglial morphologies. We speculate that early life stress may alter PL neuronal maturation and synapse formation through microglia.

摘要

未标注

灵长类动物杏仁核中一组独特的未成熟谷氨酸能神经元,即旁层核(PL),在婴儿期到青春期之间逐渐成熟。PL是这一发育时期杏仁核体积急剧增长曲线的潜在基础。小胶质细胞成分也嵌入在PL神经元之间,可能支持局部神经元成熟和新突触形成。小胶质细胞可能会在诸如应激等环境扰动后改变神经元生长。通过多种测量方法,我们首先发现婴儿灵长类动物PL中的小胶质细胞胞体相对较大,树突大小较小。相比之下,青春期PL中的小胶质细胞胞体较小,树突分支较大。然后,我们在一种新的母婴分离方案后检查了PL中的小胶质细胞形态,以研究早期生活应激的影响。母婴分离后,小胶质细胞的胞体大小、树突大小和复杂性增加。令人惊讶的是,不仅在婴儿PL中观察到强烈影响,在多年前经历过分离的受试者的青春期PL中也观察到强烈影响。我们得出结论,在母婴饲养条件下,PL小胶质细胞形态与PL神经元生长同步,到青春期发展为更“成熟”的表型。母婴分离对小胶质细胞有长期影响,改变其正常发育轨迹,导致持续数年的“过度分支”表型。我们推测这些变化对幼年灵长类动物的神经元发育有影响。

意义声明

杏仁核的旁层(PL)核是可塑性的重要来源,因为它拥有独特的未成熟谷氨酸能神经元库。PL未成熟神经元在出生到青春期之间成熟。这个过程可能由需要小胶质细胞的突触形成来支持。在猕猴的婴儿期到青春期之间,PL小胶质细胞变得更加密集,并转变为“分支状”表型,这与增加的突触修剪功能一致。然而,以母婴分离形式出现的早期生活应激使这种正常轨迹减弱,导致持续的“类炎症”小胶质细胞形态。我们推测早期生活应激可能通过小胶质细胞改变PL神经元成熟和突触形成。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验