Suppr超能文献

验证一种急性呼吸道感染表型算法,以支持基于计算机化医疗记录的稳健呼吸道哨点监测,英格兰,2023 年。

Validation of an acute respiratory infection phenotyping algorithm to support robust computerised medical record-based respiratory sentinel surveillance, England, 2023.

机构信息

Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom.

Renal services, Epsom and St. Helier University Hospitals NHS Trust, London, United Kingdom.

出版信息

Euro Surveill. 2024 Aug;29(35). doi: 10.2807/1560-7917.ES.2024.29.35.2300682.

Abstract

IntroductionRespiratory sentinel surveillance systems leveraging computerised medical records (CMR) use phenotyping algorithms to identify cases of interest, such as acute respiratory infection (ARI). The Oxford-Royal College of General Practitioners Research and Surveillance Centre (RSC) is the English primary care-based sentinel surveillance network.AimThis study describes and validates the RSC's new ARI phenotyping algorithm.MethodsWe developed the phenotyping algorithm using a framework aligned with international interoperability standards. We validated our algorithm by comparing ARI events identified during the 2022/23 influenza season in England through use of both old and new algorithms. We compared clinical codes commonly used for recording ARI.ResultsThe new algorithm identified an additional 860,039 cases and excluded 52,258, resulting in a net increase of 807,781 cases (33.84%) of ARI compared to the old algorithm, with totals of 3,194,224 cases versus 2,386,443 cases. Of the 860,039 newly identified cases, the majority (63.7%) were due to identification of symptom codes suggestive of an ARI diagnosis not detected by the old algorithm. The 52,258 cases incorrectly identified by the old algorithm were due to inadvertent identification of chronic, recurrent, non-infectious and other non-ARI disease.ConclusionWe developed a new ARI phenotyping algorithm that more accurately identifies cases of ARI from the CMR. This will benefit public health by providing more accurate surveillance reports to public health authorities. This new algorithm can serve as a blueprint for other CMR-based surveillance systems wishing to develop similar phenotyping algorithms.

摘要

简介

利用计算机化医疗记录(CMR)的呼吸哨点监测系统利用表型算法来识别有意义的病例,例如急性呼吸道感染(ARI)。牛津皇家全科医生研究和监测中心(RSC)是英国基于初级保健的哨点监测网络。

目的

本研究描述和验证了 RSC 的新 ARI 表型算法。

方法

我们使用与国际互操作性标准一致的框架开发了表型算法。我们通过在英格兰 2022/23 流感季节使用新旧算法来比较识别的 ARI 事件,验证了我们的算法。我们比较了常用于记录 ARI 的临床代码。

结果

新算法确定了另外 860,039 例 ARI 病例,并排除了 52,258 例,与旧算法相比,ARI 病例的净增加数为 807,781 例(33.84%),总计为 3,194,224 例,而旧算法为 2,386,443 例。在新确定的 860,039 例病例中,大多数(63.7%)是由于识别出旧算法未检测到的提示 ARI 诊断的症状代码。旧算法错误识别的 52,258 例是由于偶然识别出慢性、复发性、非传染性和其他非 ARI 疾病。

结论

我们开发了一种新的 ARI 表型算法,该算法可更准确地从 CMR 中识别出 ARI 病例。这将通过向公共卫生当局提供更准确的监测报告,使公共卫生受益。这个新算法可以作为其他希望开发类似表型算法的基于 CMR 的监测系统的蓝图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/300c/11484335/00d97f5e0294/2300682-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验