Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI 53706, USA.
Sci Adv. 2024 Aug 30;10(35):eadp0138. doi: 10.1126/sciadv.adp0138.
During animal development, the spatiotemporal properties of molecular events largely determine the biological outcomes. Conventional gene analysis methods lack the spatiotemporal resolution for precise dissection of developmental mechanisms. Although optogenetic tools exist for manipulating designer proteins in cultured cells, few have been successfully applied to endogenous proteins in live animals. Here, we report OptoTrap, a light-inducible clustering system for manipulating endogenous proteins of diverse sizes, subcellular locations, and functions in . This system turns on fast, is reversible in minutes or hours, and contains variants optimized for neurons and epithelial cells. By using OptoTrap to disrupt microtubules and inhibit kinesin-1 in neurons, we show that microtubules support the growth of highly dynamic dendrites and that kinesin-1 is required for patterning of low- and high-order dendritic branches in differential spatiotemporal domains. OptoTrap allows for precise manipulation of endogenous proteins in a spatiotemporal manner and thus holds promise for studying developmental mechanisms in a wide range of cell types and developmental stages.
在动物发育过程中,分子事件的时空特性在很大程度上决定了生物学结果。传统的基因分析方法缺乏精确解析发育机制的时空分辨率。尽管有光遗传学工具可用于在培养细胞中操纵设计蛋白,但很少有工具成功应用于活体动物中的内源性蛋白。在这里,我们报告了 OptoTrap,这是一种光诱导的内源性蛋白聚类系统,可用于操纵不同大小、亚细胞位置和功能的内源性蛋白。该系统快速启动,可在数分钟或数小时内逆转,并且包含针对神经元和上皮细胞优化的变体。通过使用 OptoTrap 破坏微管并抑制神经元中的驱动蛋白-1,我们表明微管支持高度动态树突的生长,并且驱动蛋白-1对于低阶和高阶树突分支在不同时空域中的模式形成是必需的。OptoTrap 允许以时空方式精确操纵内源性蛋白,因此有望在广泛的细胞类型和发育阶段研究发育机制。