Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
Biochem Biophys Res Commun. 2024 Nov 12;733:150601. doi: 10.1016/j.bbrc.2024.150601. Epub 2024 Aug 23.
Biotin is an essential coenzyme involved in various metabolic processes across all known organisms, with biotinylation being crucial for the activity of carboxylases. BirA from Haemophilus influenzae is a bifunctional protein that acts as a biotin protein ligase and a transcriptional repressor. This study reveals the crystal structures of Hin BirA in both its apo- and holo-(biotinyl-5'-AMP bound) forms. As a class II BirA, it consists of three domains: N-terminal DNA binding domain, central catalytic domain, and C-terminal SH3-like domain. The structural analysis shows that the biotin-binding loop forms an ordered structure upon biotinyl-5'-AMP binding. This facilitates its interaction with the ligand and promotes protein dimerization. Comparative studies with other BirA homologs from different organisms indicate that the residues responsible for binding biotinyl-5'-AMP are highly conserved. This study also utilized AlphaFold2 to model the potential heterodimeric interaction between Hin BirA and biotin carboxyl carrier protein, thereby providing insights into the structural basis for biotinylation. These findings enhance our understanding of the structural and functional characteristics of Hin BirA, highlighting its potential as a target for novel antibiotics that disrupt the bacterial biotin synthesis pathways.
生物素是一种必需的辅酶,参与所有已知生物的各种代谢过程,生物素化对于羧化酶的活性至关重要。流感嗜血杆菌中的 BirA 是一种具有双功能的蛋白质,既能充当生物素蛋白连接酶,又能充当转录抑制剂。本研究揭示了 Hin BirA 在其脱辅基(结合生物素基-5'-AMP)和全辅基(结合生物素基-5'-AMP)两种形式下的晶体结构。作为一种 II 类 BirA,它由三个结构域组成:N 端 DNA 结合结构域、中央催化结构域和 C 端 SH3 样结构域。结构分析表明,生物素结合环在结合生物素基-5'-AMP 后形成有序结构。这有助于其与配体相互作用并促进蛋白二聚化。与来自不同生物的其他 BirA 同源物的比较研究表明,负责结合生物素基-5'-AMP 的残基高度保守。本研究还利用 AlphaFold2 对 Hin BirA 与生物素羧基载体蛋白之间潜在的异源二聚体相互作用进行建模,从而深入了解生物素化的结构基础。这些发现增强了我们对 Hin BirA 的结构和功能特征的理解,突出了其作为破坏细菌生物素合成途径的新型抗生素靶标的潜力。