Department of Pediatrics, The University of Iowa, Iowa City, Iowa 52242.
Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa 52242.
J Neurosci. 2024 Oct 9;44(41):e0350242024. doi: 10.1523/JNEUROSCI.0350-24.2024.
Neuronal cytotoxic edema is implicated in neuronal injury and death, yet mitigating brain edema with osmotic and surgical interventions yields poor clinical outcomes. Importantly, neuronal swelling and its downstream consequences during early brain development remain poorly investigated, and new treatment approaches are needed. We explored Ca-dependent downstream effects after neuronal cytotoxic edema caused by diverse injuries in mice of both sexes using multiphoton Ca imaging in vivo [Postnatal Day (P)12-17] and in acute brain slices (P8-12). After different excitotoxic insults, cytosolic GCaMP6s translocated into the nucleus after a few minutes in a subpopulation of neurons, persisting for hours. We used an automated morphology-detection algorithm to detect neuronal soma and quantified the nuclear translocation of GCaMP6s as the nuclear to cytosolic intensity (/ ratio). Elevated neuronal / ratios occurred concurrently with persistent elevation in Ca loads and could also occur independently from neuronal swelling. Electron microscopy revealed that the nuclear translocation was associated with the increased nuclear pore size. The nuclear accumulation of GCaMP6s in neurons led to neocortical circuit dysfunction, mitochondrial pathology, and increased cell death. Inhibiting calpains, a family of Ca-activated proteases, prevented elevated / ratios and neuronal swelling. In summary, in the developing brain, we identified a calpain-dependent alteration of nuclear transport in a subpopulation of neurons after disease-relevant insults leading to long-term circuit dysfunction and cell death. The nuclear translocation of GCaMP6 and other cytosolic proteins after acute excitotoxicity can be an early biomarker of brain injury in the developing brain.
神经元细胞毒性水肿与神经元损伤和死亡有关,但通过渗透和手术干预减轻脑水肿的效果并不理想,临床预后较差。重要的是,在早期脑发育过程中,神经元肿胀及其下游后果仍未得到充分研究,需要新的治疗方法。我们使用多光子钙成像技术,在体内[出生后第 12-17 天(P12-17)]和急性脑片中(P8-12)研究了雄性和雌性小鼠因不同损伤引起的神经元细胞毒性水肿后的 Ca 依赖性下游效应。在不同的兴奋性毒性损伤后,胞质 GCaMP6s 在一小部分神经元中几分钟后就会转移到细胞核中,并持续数小时。我们使用自动形态检测算法来检测神经元胞体,并将 GCaMP6s 的核转移定量为核质强度比(/比值)。升高的神经元/比值与持续升高的 Ca 负荷同时发生,并且也可能独立于神经元肿胀发生。电子显微镜显示,核转移与核孔大小的增加有关。GCaMP6s 在神经元中的核积累导致新皮层电路功能障碍、线粒体病理学和细胞死亡增加。抑制钙蛋白酶,一种 Ca 激活的蛋白酶家族,可以防止升高的/比值和神经元肿胀。总之,在发育中的大脑中,我们在与疾病相关的损伤后,在一小部分神经元中发现了一种依赖钙蛋白酶的核转运改变,导致长期的电路功能障碍和细胞死亡。急性兴奋性毒性后 GCaMP6 和其他胞质蛋白的核转位可能是发育中大脑脑损伤的早期生物标志物。