St Vincent's BreastScreen, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia.
BreastScreen Victoria, Caulfield, VIC, Australia.
Nat Commun. 2024 Aug 30;15(1):7525. doi: 10.1038/s41467-024-51725-8.
Artificial intelligence (AI) readers of mammograms compare favourably to individual radiologists in detecting breast cancer. However, AI readers cannot perform at the level of multi-reader systems used by screening programs in countries such as Australia, Sweden, and the UK. Therefore, implementation demands human-AI collaboration. Here, we use a large, high-quality retrospective mammography dataset from Victoria, Australia to conduct detailed simulations of five potential AI-integrated screening pathways, and examine human-AI interaction effects to explore automation bias. Operating an AI reader as a second reader or as a high confidence filter improves current screening outcomes by 1.9-2.5% in sensitivity and up to 0.6% in specificity, achieving 4.6-10.9% reduction in assessments and 48-80.7% reduction in human reads. Automation bias degrades performance in multi-reader settings but improves it for single-readers. This study provides insight into feasible approaches for AI-integrated screening pathways and prospective studies necessary prior to clinical adoption.
人工智能(AI)读片员在检测乳腺癌方面的表现优于个别放射科医生。然而,AI 读片员的表现无法达到澳大利亚、瑞典和英国等国家筛查项目中使用的多读片员系统的水平。因此,需要实施人机协作。在这里,我们使用来自澳大利亚维多利亚州的一个大型、高质量的回顾性乳腺 X 线摄影数据集,对五种潜在的 AI 集成筛查途径进行详细的模拟,并研究人机交互效应,以探索自动化偏差。将 AI 读片员作为第二读片员或高置信度过滤器来运行,可将当前的筛查结果在敏感性方面提高 1.9-2.5%,在特异性方面提高最高 0.6%,减少 4.6-10.9%的评估次数,并减少 48-80.7%的人工读片次数。自动化偏差会降低多读片员设置中的性能,但会提高单读片员的性能。本研究为 AI 集成筛查途径提供了可行的方法,并为临床应用前的前瞻性研究提供了必要的见解。