Ghazanfar Sidra, Ahmed Nauman, Iqbal Muhammad Sajid, Ali Syed Mansoor, Akgül Ali, Muhammad Shah, Ali Mubasher, Hassani Murad Khan
Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan.
Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
Sci Rep. 2024 Aug 30;14(1):20234. doi: 10.1038/s41598-024-67698-z.
This work examines the (2+1)-dimensional Boiti-Leon-Pempinelli model, which finds its use in hydrodynamics. This model explains how water waves vary over time in hydrodynamics. We provide new explicit solutions to the generalized (2+1)-dimensional Boiti-Leon-Pempinelli equation by applying the Sardar sub-equation technique. This method is shown to be a reliable and practical tool for solving nonlinear wave equations. Furthermore, different types of solitary wave solutions are constructed: w-shaped, breather waved, chirped, dark, bright, kink, unique, periodic, and more. The results obtained with the variable coefficient Boiti-Leon-Pempinelli equation are stable and different from previous methods. As compared to their constant-coefficient counterparts, the variable-coefficient models are more general here. In the current work, the problem is solved using the Sardar Sub-problem Technique to produce distinct soliton solutions with parameters. Plotting these graphs of the solutions will help you better comprehend the model. The outcomes demonstrate how well the method works to solve nonlinear partial differential equations, which are common in mathematical physics.With the help of this method, we may examine a variety of solutions from significant physical perspectives.
这项工作研究了(2 + 1)维的博伊蒂 - 莱昂 - 彭皮内利模型,该模型在流体动力学中有应用。此模型解释了流体动力学中水波如何随时间变化。我们通过应用萨达尔子方程技术为广义(2 + 1)维博伊蒂 - 莱昂 - 彭皮内利方程提供了新的显式解。该方法被证明是求解非线性波动方程的可靠且实用的工具。此外,还构造了不同类型的孤立波解:w 形、呼吸波、啁啾波、暗孤子、亮孤子、扭结孤子、奇特孤子、周期孤子等等。用变系数博伊蒂 - 莱昂 - 彭皮内利方程得到的结果是稳定的,且与以前的方法不同。与常系数对应模型相比,这里的变系数模型更具一般性。在当前工作中,使用萨达尔子问题技术解决该问题以产生带参数的不同孤子解。绘制这些解的图形将有助于你更好地理解该模型。结果表明该方法在求解数学物理中常见的非线性偏微分方程方面效果良好。借助此方法,我们可以从重要的物理角度研究各种解。