Ashaq Hira, Majid Sheikh Zain, Riaz Muhammad Bilal, Asjad Muhammad Imran, Muhammad Taseer
Department of Mathematics, University of Management and Technology, Lahore, Pakistan.
IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czech Republic.
Heliyon. 2024 Jun 14;10(12):e32826. doi: 10.1016/j.heliyon.2024.e32826. eCollection 2024 Jun 30.
The current study explores the (2+1)-dimensional Chaffee-Infante equation, which holds significant importance in theoretical physics renowned reaction-diffusion equation with widespread applications across multiple disciplines, for example, ion-acoustic waves in optical fibres, fluid dynamics, electromagnetic wave fields, high-energy physics, coastal engineering, fluid mechanics, plasma physics, and various other fields. Furthermore, the Chaffee-Infante equation serves as a model that elucidates the physical processes of mass transport and particle diffusion. We employ an innovative new extended direct algebraic method to enhance the accuracy of the derived exact travelling wave solutions. The obtained soliton solutions span a wide range of travelling waves like bright-bell shape, combined bright-dark, multiple bright-dark, bright, flat-kink, periodic, and singular. These solutions offer valuable insights into wave behaviour in nonlinear media and find applications in diverse fields such as optical fibres, fluid dynamics, electromagnetic wave fields, high-energy physics, coastal engineering, fluid mechanics, and plasma physics. Soliton solutions are visually present by manipulating parameters using Wolfram Mathematica software, graphical representations allow us to study solitary waves as parameters change. Observing the dynamics of the model, this study presents sensitivity in a nonlinear dynamical system. The applied mathematical approaches demonstrate its ability to identify reliable and efficient travelling wave solitary solutions for various nonlinear evolution equations.
当前的研究探讨了(2 + 1)维的查菲-英方特方程,该方程在理论物理中具有重要意义,是著名的反应扩散方程,在多个学科中有着广泛应用,例如光纤中的离子声波、流体动力学、电磁波场、高能物理、海岸工程、流体力学、等离子体物理以及其他各种领域。此外,查菲-英方特方程作为一个模型,阐明了质量传输和粒子扩散的物理过程。我们采用一种创新的新型扩展直接代数方法来提高所推导精确行波解的准确性。所获得的孤子解涵盖了广泛的行波类型,如亮钟形、明暗组合、多明暗、亮、平扭结、周期性和奇异的行波。这些解为非线性介质中的波行为提供了有价值的见解,并在光纤、流体动力学、电磁波场、高能物理、海岸工程、流体力学和等离子体物理等不同领域有应用。通过使用Wolfram Mathematica软件操纵参数直观呈现孤子解,图形表示使我们能够研究随着参数变化的孤立波。观察该模型的动力学,本研究展示了非线性动力系统中的敏感性。所应用的数学方法证明了其为各种非线性演化方程识别可靠且高效的行波孤子解的能力。