Suppr超能文献

多视角场景匹配与关系感知特征感知。

Multi-view scene matching with relation aware feature perception.

机构信息

School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China; School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), Xi'an 710072, China.

出版信息

Neural Netw. 2024 Dec;180:106662. doi: 10.1016/j.neunet.2024.106662. Epub 2024 Aug 23.

Abstract

For scene matching, the extraction of metric features is a challenging task in the face of multi-source and multi-view scenes. Aiming at the requirements of multi-source and multi-view scene matching, a siamese network model for Spatial Relation Aware feature perception and fusion is proposed. The key contributions of this work are as follows: (1) Seeking to enhance the coherence of multi-view image features, we investigate the relation aware feature perception. With the help of spatial relation vector decomposition, the distribution consistency perception of image features in the horizontal H→ and vertical W→ directions is realized. (2) In order to establish the metric consistency relationship, the large-scale local information perception strategy is studied to realize the relative trade-off scale selection under the size of mainstream aerial images and satellite images. (3) After obtaining the multi-scale metric features, in order to improve the metric confidence, the feature selection and fusion strategy is proposed. The significance of distinct feature levels in the backbone network is systematically assessed prior to fusion, leading to an enhancement in the representation of pivotal components within the metric features during the fusion process. The experimental results obtained from the University-1652 dataset and the collected real scene data affirm the efficacy of the proposed method in enhancing the reliability of the metric model. The demonstrated effectiveness of this method suggests its applicability to diverse scene matching tasks.

摘要

针对场景匹配中多源多视角场景下度量特征提取这一难题,针对多源多视角场景匹配的需求,提出了一种基于孪生网络的空间关系感知特征感知与融合方法。本文的主要贡献如下:(1)为了增强多视角图像特征的一致性,研究了关系感知特征感知。借助空间关系向量分解,实现了图像特征在水平 H→和垂直 W→方向上的分布一致性感知。(2)为了建立度量一致性关系,研究了大尺度局部信息感知策略,实现了主流航空图像和卫星图像尺寸下的相对权衡尺度选择。(3)获得多尺度度量特征后,为了提高度量置信度,提出了特征选择和融合策略。在融合之前,系统地评估骨干网络中不同特征层次的显著性,从而在融合过程中增强度量特征中关键成分的表示能力。在 University-1652 数据集和收集的真实场景数据上的实验结果验证了所提出方法在提高度量模型可靠性方面的有效性。该方法的有效性表明它适用于各种场景匹配任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验