College of Automation, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
Computer Information Systems Department, State University of New York at Buffalo State, Buffalo, NY, 14222, USA.
Comput Biol Med. 2024 Nov;182:109204. doi: 10.1016/j.compbiomed.2024.109204. Epub 2024 Oct 3.
In the field of computer-aided medical diagnosis, it is crucial to adapt medical image segmentation to limited computing resources. There is tremendous value in developing accurate, real-time vision processing models that require minimal computational resources. When building lightweight models, there is always a trade-off between computational cost and segmentation performance. Performance often suffers when applying models to meet resource-constrained scenarios characterized by computation, memory, or storage constraints. This remains an ongoing challenge. This paper proposes a lightweight network for medical image segmentation. It introduces a lightweight transformer, proposes a simplified core feature extraction network to capture more semantic information, and builds a multi-scale feature interaction guidance framework. The fusion module embedded in this framework is designed to address spatial and channel complexities. Through the multi-scale feature interaction guidance framework and fusion module, the proposed network achieves robust semantic information extraction from low-resolution feature maps and rich spatial information retrieval from high-resolution feature maps while ensuring segmentation performance. This significantly reduces the parameter requirements for maintaining deep features within the network, resulting in faster inference and reduced floating-point operations (FLOPs) and parameter counts. Experimental results on ISIC2017 and ISIC2018 datasets confirm the effectiveness of the proposed network in medical image segmentation tasks. For instance, on the ISIC2017 dataset, the proposed network achieved a segmentation accuracy of 82.33 % mIoU, and a speed of 71.26 FPS on 256 × 256 images using a GeForce GTX 3090 GPU. Furthermore, the proposed network is tremendously lightweight, containing only 0.524M parameters. The corresponding source codes are available at https://github.com/CurbUni/LMIS-lightweight-network.
在计算机辅助医学诊断领域,适应医学图像分割到有限的计算资源是至关重要的。开发需要最小计算资源的准确、实时的视觉处理模型具有巨大的价值。在构建轻量级模型时,计算成本和分割性能之间总是存在权衡。当将模型应用于以计算、内存或存储约束为特征的资源受限场景时,性能往往会受到影响。这仍然是一个持续的挑战。本文提出了一种用于医学图像分割的轻量级网络。它引入了一个轻量级的转换器,提出了一个简化的核心特征提取网络来捕获更多的语义信息,并构建了一个多尺度特征交互指导框架。该框架中嵌入的融合模块旨在解决空间和通道复杂性。通过多尺度特征交互指导框架和融合模块,所提出的网络实现了从低分辨率特征图中提取稳健的语义信息,并从高分辨率特征图中提取丰富的空间信息,同时保证分割性能。这显著减少了网络中保持深度特征所需的参数要求,从而实现更快的推理和减少浮点运算(FLOPs)和参数计数。在 ISIC2017 和 ISIC2018 数据集上的实验结果证实了所提出的网络在医学图像分割任务中的有效性。例如,在所提出的网络在 ISIC2017 数据集上实现了 82.33% mIoU 的分割精度,并且在使用 GeForce GTX 3090 GPU 的 256×256 图像上实现了 71.26 FPS 的速度。此外,所提出的网络非常轻量级,仅包含 0.524M 参数。相应的源代码可在 https://github.com/CurbUni/LMIS-lightweight-network 上获得。